纳米药物在肿瘤中的积累依赖于增强渗透性和滞留性 (EPR) 效应。在过去的 5-10 年中,人们越来越认识到 EPR 介导的肿瘤靶向存在很大的个体间和个体内异质性,这解释了评估纳米药物制剂的临床试验结果的异质性。为了解决这种异质性,就像在肿瘤药物开发的其他领域一样,我们必须放弃一刀切的肿瘤靶向方法,转向可以用于个性化和改善纳米药物治疗的方法。为此,必须努力更好地了解 EPR 效应的性质、复杂性和异质性,并建立系统和策略来增强、结合、绕过和成像基于 EPR 的肿瘤靶向。在本论文中,我们总结了探索这些策略的关键研究,并讨论了如何使用这些方法来增强患者的反应。
摘要:背景:Mito-metformin10 (MM10) 是通过将三苯基膦阳离子部分通过 10 碳脂肪族侧链连接到二甲双胍而合成的,是一种靶向线粒体的二甲双胍类似物,最近被证明可以改变胰腺导管腺癌中的线粒体功能和增殖。在这里,我们假设这种化合物可以降低前列腺癌细胞的耗氧率 (OCR),增加线粒体 ROS 水平,缓解肿瘤缺氧,并使肿瘤放射敏感。方法:在体外通过 EPR (9 GHz) 评估 PC-3 和 DU-145 前列腺癌细胞中的 OCR 和线粒体超氧化物生成。在 MM10 暴露之前和之后评估还原和氧化谷胱甘肽。在 PC-3 肿瘤模型中使用 1 GHz EPR 血氧仪测量体内肿瘤氧合情况。在最大复氧时对肿瘤进行照射。结果:24 小时暴露于 MM10 显著降低了 PC-3 和 DU-145 癌细胞的 OCR。在 PC-3 中观察到线粒体超氧化物水平增加,但在 DU-145 癌细胞中没有增加,这一观察结果与两种癌细胞系中谷胱甘肽水平的差异一致。体内,在开始治疗后 48 和 72 小时,PC-3 模型(每日注射 2 mg/kg MM10)中的肿瘤氧合显著增加。尽管对肿瘤缺氧有显著影响,但与单独照射相比,MM10 与照射相结合并没有增加肿瘤生长延迟。结论:MM10 改变了前列腺癌细胞的 OCR。MM10 对超氧化物水平的影响取决于细胞系的抗氧化能力。在体内,MM10 减轻了肿瘤缺氧,但没有影响对放射的反应。
MAEDA和同事在固体鼠类中首先发现EPR效应[1,2]。聚合物 - 毒物偶联物为静脉施用了10至100倍的浓度[2-4]。被动靶向的癌症药物在大约30年前首次到达诊所,并批准了一种基于EPR的药物,即一种高乙二醇化的脂质体药物Doxil。纳米载体优先通过被动靶向在实体瘤中渗漏和淋巴引流,因此优先通过被动靶向积聚。混乱的脉管系统和肿瘤微疗法(TME)和保留率的渗透性可导致TME中大分子的积累70倍。由于对恶性肿瘤的支撑至关重要的血管形成而产生的漏水和缺陷的脉管系统,再加上不完善的淋巴引流,允许EPR效应。肿瘤脉管系统的直径,形状和密度不规则,与不连续的血管不规则。这导致了几种条件,包括肿瘤中的杂种灌注,从流体,缺氧和酸性环境的外部灌注压力升高[5]。基于EPR的药物输送取决于各种因素,包括循环时间,靶向以及克服障碍的能力,这些因素取决于药物颗粒的大小,形状和表面特性。被动靶向主要基于扩散机制。结果,大小是EPR依赖性输送过程中的关键因素。形状和形态在被动靶向中也起着重要作用。研究表明,大约40至400 nm的纳米颗粒尺寸范围适合确保长期循环时间,并增加了肾脏清除率降低的肿瘤的积累[6]。通常,刚性的刚性,尺寸为50至200 nm的球形颗粒具有长期循环的最高趋势,以避免肝脏吸收
在我们的高级实验室中,我们对经过处理的纸进行了全面的分析测试套件。傅立叶变换红外光谱(FTIR)证实了新的酯键的形成,其明显的吸收峰出现在1730 cm⁻见附近,表明成功嫁接。差异扫描量热法(DSC)和热重分析(TGA)证实,该纸张在超过230°C的温度下保持结构完整性,这是包装暴露于各种气候和分布条件的基本参数。动态机械分析(DMA)表明,该论文在广泛的温度范围内保留了稳定的粘弹性模量,从而确保了一致的机械性能。通过扫描电子显微镜(SEM)和原子力显微镜(AFM)进行高分辨率成像显示出均匀的,无缺陷的表面形态,证明了我们整合过程的功效。通过扫描电子显微镜(SEM)和原子力显微镜(AFM)进行高分辨率成像显示出均匀的,无缺陷的表面形态,证明了我们整合过程的功效。
• 消费必需品行业的利润率低于平均水平 • 标普 500 指数消费必需品成分股的营业利润率为 7.4%,而整个指数的营业利润率为 12.6% (Yardeni & Abbott 2022) • 摩根大通股票研究表明,由于供应链定价压力,金佰利、高乐氏和雷诺的毛利率将下降 7-10 个百分点 (Teixeira 2022) • 这表明该行业的竞争比平均水平更激烈,意味着成本上涨更难转嫁给客户。如果成本上涨可以轻易转嫁给消费者,毛利率就不会下降这么多。
摘要:在三十多年来,基于肿瘤选择性治疗实体瘤的渗透性和保留率(EPR)效应的纳米医学已受到了很大的关注。然而,由于肿瘤或栓塞性肿瘤血管,晚期癌症的治疗仍然是一个巨大的挑战,这导致了EPR效应的所谓异质性。我们先前使用一氧化氮供体和其他称为EPR效应增强子的药物来恢复血管中血管中血流受损的方法。在这里,我们表明,两个新型的EPR效应增强剂 - 异端二硝酸盐(ISDN,Nitrol®)和Sildena fi柠檬酸盐 - 将三种大分子分子药物递送至肿瘤:聚(造型(造型(造型))(造型 - co-maleic Acid)(Sma)和cisplatin,smaplatin,smaplatin,smaplatin;聚(N-(2-羟丙基)甲基丙烯酰胺)聚合物共轭锌原磷脂(光动力疗法和成像);和SMA葡萄糖胺 - 偶联的硼酸络合物(硼中子捕获疗法)。我们在患有晚期C26肿瘤的小鼠中测试了这些纳米果。当这些纳米医学与ISDN或Sildena-Fil一起施用时,肿瘤递送,因此阳性治疗结果在直径为15 mm或更多的肿瘤中增加了2至4倍。这些结果证实了使用EPR效应增强子恢复肿瘤血流的基本原理。总而言之,所有测试的EPR效应增强剂均显示出在癌症治疗中应用的巨大潜力。
1个化学与化学工程学院,哈尔滨理工学院,中国150001年西达齐街92号; larisa.latypova@hit.edu.cn 2 Zhengzhou研究所,Harbin理工学院,Longyuan East 7th Street和Longhu East East 7th Street和Longhu Central North Road,Zhengdong New District,Zhengzhou 450046 450046,中国3号kazan Federal University of Kazan University,KeremleveSkaya,450046,KRUSSAN,KEREAVSKAYA,45008,4500088.2000 keria keria keria,42000; georgemamin@gmail.com(G.M. ); margaritaasadov@gmail.com(M.S.) 4巴黎的纳米科学研究所,校园皮埃尔·玛丽·库里(Pierre et Marie Curie),索邦纳大学(Sorbonne Universit),4,Place Jussieu,75005 Paris,Paris,法国; vonbarde@insp.jussieu.fr 5 Istituto di struttura della Materia,Consiglio Nazionale Delle Ricerche,ISM-CNR,通过Del Fosso del cavaliere 100,00133 Rome,00133 Rome,00133 ROME,意大利,意大利6分析,物理化学,和胶体化学,I.M.M.M.M.M. Sechenov First Moscow State医科大学,Trubetskaya 8,Build。 2,119048俄罗斯莫斯科 *信件:Murzakhanov.fadis@yandex.ru(F.M. ) ); giulietta.rau@ism.cnr.it(j.v.r。)1个化学与化学工程学院,哈尔滨理工学院,中国150001年西达齐街92号; larisa.latypova@hit.edu.cn 2 Zhengzhou研究所,Harbin理工学院,Longyuan East 7th Street和Longhu East East 7th Street和Longhu Central North Road,Zhengdong New District,Zhengzhou 450046 450046,中国3号kazan Federal University of Kazan University,KeremleveSkaya,450046,KRUSSAN,KEREAVSKAYA,45008,4500088.2000 keria keria keria,42000; georgemamin@gmail.com(G.M.); margaritaasadov@gmail.com(M.S.)4巴黎的纳米科学研究所,校园皮埃尔·玛丽·库里(Pierre et Marie Curie),索邦纳大学(Sorbonne Universit),4,Place Jussieu,75005 Paris,Paris,法国; vonbarde@insp.jussieu.fr 5 Istituto di struttura della Materia,Consiglio Nazionale Delle Ricerche,ISM-CNR,通过Del Fosso del cavaliere 100,00133 Rome,00133 Rome,00133 ROME,意大利,意大利6分析,物理化学,和胶体化学,I.M.M.M.M.M.Sechenov First Moscow State医科大学,Trubetskaya 8,Build。2,119048俄罗斯莫斯科 *信件:Murzakhanov.fadis@yandex.ru(F.M. ) ); giulietta.rau@ism.cnr.it(j.v.r。)2,119048俄罗斯莫斯科 *信件:Murzakhanov.fadis@yandex.ru(F.M.); giulietta.rau@ism.cnr.it(j.v.r。)
AB1Y00225J 0.2 254 / 10 25 EPR AB2Y00225J 0.2 508 / 20 25 EPR AB1Y0033J 0.3 254 / 10 3 EPR AB2Y0033J 0.3 508 / 20 3 EPR AB1Y0053J 0.5 254 / 10 3 EPR AB2Y0053J 0.5 508 / 20 3 EPR AB1Y0103J 1 254 / 10 3 EPR AB2Y0103J 1 508 / 20 3 EPR AB1Y0303J 3 254 / 10 3 EPR AB2Y0303J 3 508 / 20 3 EPR AB1Y0503J 5 254 / 10 3 EPR AB2Y0503J 5 508 / 20 3 EPR AB1Y1003J 10 254 / 10 3 EPR AB2Y1003J 10 508 / 20 3 EPR AB1Y2003J 20 254 / 10 3 EPR AB2Y2003J 20 508 / 20 3 EPR AB1Y3003J 30 254 / 10 3 EPR AB2Y3003J 30 508 / 20 3 EPR AB1Y4003J 40 254 / 10 3 EPR AB2Y4003J 40 508 / 20 3 EPR
“被限制在钢腔中的是一个盖革柜台,该底座用少量的[放射性]铀制备,以至于在下一个小时内,很可能期望一个原子衰变与无。放大的继电器提供了第一个原子衰减会破碎一小瓶普鲁士酸[氰化物毒药]。这是残酷的 - 一只猫也被困在钢腔中。”
量子纠缠是长距离量子通信的关键。在量子通信节点之间进行纠缠分布的第一步是在相邻通信节点之间生成链路级爱因斯坦-波多尔斯基-罗森 (EPR) 对。EPR 对可以连续生成并存储在一些量子存储器中,以供量子应用使用。一个主要的挑战是量子比特会因与环境的相互作用而遭受不可避免的噪声,这被称为退相干。这种退相干导致量子比特的保真度随时间呈已知的指数衰减模型,从而限制了量子存储器中量子比特的寿命和量子应用的性能。在本文中,我们评估了在两种相反的动态和概率现象下存储的 EPR 对的保真度,首先是前面提到的退相干和第二次净化,即以牺牲另一个 EPR 对为代价来提高 EPR 对的保真度的操作。我们不是一生成两个 EPR 对就应用净化,而是引入了两个 EPR 对的生成时间之外的净化方案 (PBG)。我们分析显示了在每个节点有两个量子存储器的系统中存储的链路级 EPR 对的保真度的概率分布,该系统最多允许两个存储的 EPR 对。此外,我们应用了一种 PBG 方案,在生成另一个 EPR 对时净化两个存储的 EPR 对。最后,我们对分析方法进行了数值评估,并展示了所考虑的净化方案的保真度-速率权衡。