2025年3月11日 - Weebit Nano Ltd(ASX:WBT,Weebt或Company)是全球半导体行业的先进存储技术的领先开发人员和许可人,已完成AEC-Q100 150°C其电阻随机记忆(RERAM)模块化工艺的电阻随机记忆(RERAM)模块化工艺的合格资格。这项成就证实了Weebit的嵌入式RERAM非挥发性内存(NVM)技术用于高温汽车应用的质量和可靠性。汽车电子委员会(AEC)最初是由克莱斯勒,福特和通用汽车建立的,目的是建立共同的部分资格和质量系统标准,从那时起,汽车行业的许多关键参与者就加入了。AEC-Q100是集成电路(ICS)的标准汽车应力测试资格。根据AEC-Q100标准的非易失性存储器,包括程序/擦除耐力,数据保留和高温操作生命(HTOL)资格测试,Weebit Reram模块是资格的。使用单晶体管的单耐(1T1R)细胞结构实现了资格,表明在150°C运行时的稳定性最高为100K耐力周期*,包括循环和循环后的高温数据保留。根据Yole Group的一部分Yole Intelltence的说法,汽车行业的半导体市场将从2023年的520亿美元增长到2029年的970亿美元,每辆车的半导体设备数量也在继续增长**。增长主要是由采用更多电气化和高级驾驶员辅助系统(ADA)的驱动,从而导致需要更先进的处理和更有效的功率管理,而RERAM起着关键作用的领域。Weebit Nano首席执行官Coby Hanoch说:“全AEC-Q100资格是将NVM设计到汽车微控制器和其他组件中的关键要求。通过这项成就,考虑嵌入式NVM的公司将知道Weebit Reram的参数与汽车制造商的规格保持一致,这将继续提高我们在该领域的地位。“此资格还具有更大的影响,超出了汽车,因为许多工业和物联网应用,例如井下工具,燃烧发动机,石油和天然气等,都需要高温可靠性和扩展的耐力。实现AEC-Q100资格也会影响许多其他应用,因为它使设计师充满信心,即技术非常强大,可靠,甚至超出了他们的需求。“我们有信心,这种进一步的资格将引起潜在客户的更大兴趣,这些客户正在寻求具有温度可靠性并扩展的记忆进步
Emass的创始人Mohamed M. Sabry Aly评论说:“这项合作代表了AI硬件创新的新时代。Emass最近从MRAM技术过渡了,因为RERAM能够更好地支持物联网,汽车和消费电子产品中的下一代系统。通过将Weebit的替代重新拉动与我们的超低功率AI技术相结合,我们为下一代解决方案奠定了基础,该解决方案将重新为AI应用程序重新提供能源效率。这种集成可以增强系统性能,并确保可扩展性和可持续性,为更智能,更自主的边缘设备铺平道路。通过这种协同作用,我们准备在AI计算中实现无与伦比的进步,在物联网,医疗保健,汽车和工业自动化等行业中造成有意义的影响。”
Emass的创始人Mohamed M. Sabry Aly评论说:“这项合作代表了AI硬件创新的新时代。Emass最近从MRAM技术过渡了,因为RERAM能够更好地支持物联网,汽车和消费电子产品中的下一代系统。通过将Weebit的替代重新拉动与我们的超低功率AI技术相结合,我们为下一代解决方案奠定了基础,该解决方案将重新为AI应用程序重新提供能源效率。这种集成可以增强系统性能,并确保可扩展性和可持续性,为更智能,更自主的边缘设备铺平道路。通过这种协同作用,我们准备在AI计算中实现无与伦比的进步,在物联网,医疗保健,汽车和工业自动化等行业中造成有意义的影响。”
在嵌入式系统在电动汽车、医疗保健、工业或基础设施监控等关键领域发挥越来越重要作用的时代,对实时数据处理的需求至关重要。本文讨论了这些应用中高传感器数据速率和微控制器 (MCU) 有限处理能力所带来的挑战。它介绍了一种利用串行铁电 RAM (FeRAM) 架构以及计算 SRAM 概念的新型计算方法,称为就地计算 (CIP)。对 CIP 串行 FeRAM 的探索揭示了其在高吞吐量处理大量传感器数据时提高可预测性、能源效率和安全性的潜力。与传统计算架构不同,CIP 串行 FeRAM 通过在内存中启用计算任务,减轻了 MCU 的计算负荷、降低了延迟并提高了能源效率。本文强调了 CIP 串行 FeRAM 对各种实时任务的灵活性,为更高性能、更高效和适应性更强的关键嵌入式系统铺平了道路。
“ Xeed”表示成功和超越,这意味着成功并超越当前,而“ X”表示无限的可能性和共同创造。尽管我们的公司名称已更改,但我们将继续专注于客户重视的高可靠性和独特的建议功能。
❖ 全球十大晶圆代工厂之一,总部位于韩国 ❖ 全球顶级模拟及电源 IC 代工厂之一 ❖ 年营收 13 亿美元
摘要 — 随着铁电铪锆氧化物 (HZO) 在铁电微电子学中的应用越来越广泛,了解有意和无意电介质界面的集成影响及其对铁电薄膜唤醒和电路参数的影响变得非常重要。在这项工作中,测量了在具有 NbN 电极的 FeRAM 应用的电容器结构中铁电 Hf 0.58 Zr 0.42 O 2 薄膜下方添加线性电介质氧化铝 Al 2 O 3 的影响。观察到由线性电介质产生的去极化场会导致铁电体的剩余极化降低。氧化铝的添加还会影响 HZO 相对于施加的循环电压的唤醒。与 FeRAM 1C/1T 单元的设计密切相关,观察到金属-铁电-绝缘体-金属 (MFIM) 设备会根据氧化铝厚度和唤醒循环电压显著转移与读取状态相关的电荷。测量结果显示读取状态分离减少了 33%,这使存储单元的设计变得复杂,并说明了设备中清晰接口的重要性。
b'\ xcb \ x98引导erom + 2 mbytes eRam w/ecc \ xcb \ x98内存接口(挥发性)\ xcb \ x98 ddr2/ddr3/ddr3/ddr4 \ xcb \ xcb \ x98存储器接口(非挥发性)内存传输'
WBT 的上市时机把握得非常好。一方面,潜在市场正在增长,但另一方面,现有技术正在接近其物理极限。根据 MarketsandMarkets 的数据,NVM 的全球市场预计将从 2022 年的 746 亿美元增长到 2027 年的 1241 亿美元,复合年增长率为 10.7%。尽管 WBT 的 ReRAM 技术适用于嵌入式和独立内存,但它首先在嵌入式应用上实现商业化。嵌入式应用指的是与微控制器一起集成到芯片(片上系统或 SoC)中的内存。嵌入式内存通常比内存组件位于芯片旁边的解决方案性能更好,特别是在速度和能耗方面,这仅仅是因为数据不必传输太远才能到达微控制器。
摘要 — 基因组序列比对是许多生物应用的核心。测序技术的进步产生了大量的数据,使序列比对成为生物信息学分析的关键瓶颈。现有的比对硬件加速器存在片上内存有限、数据移动成本高、比对算法优化不佳等问题。它们无法同时处理测序机产生的大量数据。在本文中,我们提出了一种基于 ReRAM 的加速器 RAPIDx,使用内存处理 (PIM) 进行序列比对。RAPIDx 通过软硬件协同设计实现了卓越的效率和性能。首先,我们提出了一种适用于 PIM 架构的自适应带状并行比对算法。与原有的基于动态规划的比对相比,所提出的算法显著降低了所需的复杂度、数据位宽和内存占用,而准确性下降却微不足道。然后,我们提出了实现所提算法的高效 PIM 架构。 RAPIDx 中的数据流实现了四级并行,我们在 ReRAM 中设计了一个原位比对计算流,与我们之前的 PIM 设计 RAPID 相比,效率和吞吐量提高了 5.5-9.7 倍。所提出的 RAPIDx 可重新配置为集成到现有基因组分析流程中的协处理器,以增强序列比对或编辑距离计算。在短读比对中,RAPIDx 分别比最先进的 CPU 和 GPU 库提供了 131.1 倍和 46.8 倍的吞吐量改进。与用于长读比对的 ASIC 加速器相比,RAPIDx 的性能高出 1.8-2.9 倍。