12 月 16 日,最后一架空中客车 A380 客机 MSN272 交付给巨型客机客户阿联酋航空,使这一短暂却具有标志性的飞机项目的总交付量达到 251 架。这款四引擎巨型客机深受乘客喜爱,是阿联酋航空连接世界的巨型航空公司战略的关键支柱,但它诞生于新一代燃油效率更高的宽体双引擎客机(以波音 787 为代表)推出的时代,这种客机提供点对点旅行,绕过了拥挤的大型枢纽。与此同时,A380 的进一步发展,如货机、加长机身和重新配备引擎的新型变体,都化为泡影。然而,尽管 A380 在商业销售方面失败了(并且将继续飞行多年),但它确实成功地将欧洲实体 EADS 更紧密地整合到空中客车这个单一的企业巨头中,目前空中客车在商业航空航天领域占据主导地位。因此,A380 广为人知的布线问题源于法国和德国设计办公室之间的差异,这有助于形成空客如今的单一团队关注点。然而,这是一个代价高昂的教训——一些批评者会认为,这个欧洲旗舰航空航天项目的傲慢加剧了这一教训。快进到今天——特大城市的不断增长正在帮助推动另一个主要航空航天领域——电动垂直起降飞机和城市空中交通的发展。在这里,电动垂直起降飞机的倡导者预见到城市交通拥堵(而不是像 A380 那样的机场交通拥堵)将迫使通勤者飞上天空,摆脱拥挤的地面交通方式。这个预测会像 A380 那样(见 eVTOL 泡沫?,第 14 页)还是会成功(见垂直起降梦想由此而生,第 29 页)?有一件事是肯定的——无论如何,我们都将迎来一段激动人心的旅程。
我们的系统家庭,包括四个EVTOL无人机和一个无人机端口解决方案,集成了硬件,软件和AI,以提供创新的空中智能,用于多域操作和软件定义的防御。我们的可扩展和功能解决方案是动态环境中高效且网络情境意识的关键。
数字阴影能够成功模拟电机的速度和 q 轴电流调节。这种精确的响应确保了数字阴影为 RUL 模型提供的输入与真实组件所经历的输入相当。瞬态模型和硬件响应之间的一致性如图 2 所示。仅从负载和速度设定点,瞬态模型就能够准确预测电机的速度、扭矩和功率响应。然后使用这些计算出的量作为输入来确定关键系统组件的 RUL。数字阴影能够根据操作条件动态更新 RUL 估计,如图 3 所示。这种一致性凸显了数字阴影在镜像实时操作和估计不同操作条件下的组件寿命方面的有效性。这种数字阴影的一个重要方面是它对电机的 RUL 估计的动态适应,这显示出对操作变化的高度响应。当电机在 100 秒内改变速度时,这种反馈尤为明显。图 3 中 RUL 图的斜率降低捕捉到了这一事件,速度降低后,图的后半部分电机扭矩也相应下降。这种响应能力对于维护和运营策略的实时监控和决策至关重要,将数字阴影定位为 eVTOL 动力系统管理的宝贵预测工具
• eVTOL 飞机的潜在细分市场以及管理这些市场的机会 • 洞察未来基础设施、空域和土地需求以及如何融入澳大利亚现有的基础设施和运输系统 • 确定澳大利亚基础设施、法规和规划要求方面的差距 • 尽早了解满足澳大利亚条件的要求,以支持法规协调并允许澳大利亚为国际标准的制定做出贡献(而不是事后修改标准,这会减缓技术创新的发展和快速采用) • 澳大利亚研究和开发的方向,以及为不断发展的 eVTOL 技术的早期试验和测试建立潜在案例研究。
Skai 包括专利保护技术、空中交通服务以及电力和冗余方面的创新。其独特的品牌地位和市场进入策略确保其已准备好长期保持领先地位,具有广泛的应用和大众可及性。
•evtol飞机的潜在细分市场以及管理这些市场的机会•深入了解未来的基础设施,空间和土地要求,以及如何融入澳大利亚现有的基础设施和运输系统中•确定基础设施,法规和计划中的基础设施和规划要求的差距,以在澳大利亚内部的需求范围内征服澳大利亚的早期认识•允许澳大利亚的规定范围降低澳大利亚的规定,并允许澳大利亚的统一范围,而不是在澳大利亚统治范围内,而不是在国际上汇总的规定,而促成了促进的发展,该规定是在国际上汇总的贡献,而促进了促进的努力(贡献了促进的促进,则促进了促进的促进,该公司的贡献是在促成促进的贡献(这减慢了技术创新的发展和快速采用)•澳大利亚研发的方向,以及建立潜在的案例研究,以进行早期试验和测试不断发展的EVTOL技术。
在过去的十年中,电动汽车的改编已从利基市场发展为广泛接受,2021年售出了60万台电动或插电式电动汽车,在2020年中占138%[1]。截至2022年3月,电动汽车市场仅占市场份额的4.6%[2];但是,汽车高管认为,在未来十年中,全部新销售中的一半将是电动汽车[3]。在过去十年中,航空航天行业也发生了变化。随着电动汽车的流行和电推进技术的发展,这导致了电动垂直起飞和着陆(EVTOL)飞机的创造和开发。这些车辆利用全电动或混合电力推进系统,并主要迎合城市环境中个人运输的任务。这些车辆的成熟将导致城市运输的范式转变。这些车辆有望像商业出租车一样操作,能够通过空中在城市环境中在城市环境中运输人员,从而绕开道路交通并创造更快,更有效的旅行。实际上有数百辆正在开发的车辆[4],到2040年,市场有可能扩大到1万亿美元。当前在设计或原型阶段中的绝大多数EVTOL飞机都利用电动或混合电动推进系统。这种类型的系统是使用气体发动机的常规液体推进系统的新替代品。这些由储能系统(ESS)组成,它们通常是连接到各种电动机和螺旋桨的大型锂离子电池模块以及相关的电池管理系统(BMS)。这些系统的创建是为了解决在城市环境中运营重要的因素,通过静静,经济运行,同时产生零或接近零排放作为环境因素。一个障碍阻碍这些新飞机的潜在增长和接受是ESS系统的认证方面。虽然ESS系统的认证必须基于多种要求,但本文档将仅讨论一个特定的要求差距,该差距与与ESS在动态不良事件或崩溃中相关的未知数涉及的涉及。在发生广泛适应之前,将需要克服此障碍。尽管存在ESS存在的现有飞机监管指南和标准(在本文档中可以识别),但它们主要涵盖不当,安装或将电池分类为次要电源。在确定证明撞车性ESS的程序时存在一个主要差距,主要是锂离子电池作为推进的主要手段。本文档讨论了NASA进行的研究,以确定可以用作认证基础的测试方法的有效性,以便提供数据并深入了解车辆ESS测试。此见解对于车辆原始设备制造商(OEM)以及其他研究人员,监管机构,标准组织和感兴趣的各方都很有价值。在锂离子电池化学,机械测试和与相关危害的影响测试的领域进行了文献综述,以了解有关当前可用的测试方法,并可能推断出解决ESS崩溃的可能性。使用了各种来源,包括相关标准文件,研究文章,与主题专家的讨论以及其他相关文献和新闻文章。本文档总结了NASA提供和收集的信息。
摘要:本文将新颖的 LPV(线性参数变化)模型和 MPC(模型预测控制)方法应用于电动垂直起降飞机的倾斜过渡过程,该飞机具有六个分布式电动旋翼和固定翼,用于平飞,其中两个旋翼可倾斜以在从悬停到稳态平飞的倾斜过渡期间产生可变推力矢量,其余四个旋翼不能倾斜。在平飞过程中,固定翼引起的气动升力保持飞行高度。基于由倾转旋翼角位置和故障旋翼速度预定的标称倾斜轨迹,通过沿倾斜轨迹线性化非线性 eVTOL 飞机模型,基于显著减少的线性时不变模型数量构建了离散时间 LPV 模型,其中倾转旋翼角度和故障旋翼速度可以实时测量。提出了一种基于σ移位H 2 范数的LPV建模误差评估方法,并设计了具有动态参考补偿的自适应模型预测控制器。仿真研究表明,基于转子故障倾斜过渡LPV模型的自适应MPC策略是成功的。