摘要 自从我开始做博士后研究以来的过去 20 年里,遗传学和基因组学领域发生了巨大的变化。我整个职业生涯的主要研究目标一直是了解人类疾病遗传学,并且我开发了比较基因组学和比较遗传学来生成了解人类疾病的资源和工具。通过比较基因组学,我对足够多的哺乳动物进行了测序,以了解人类基因组中每个碱基的功能潜力,并选择了脊椎动物来研究赋予许多物种关键性状的进化变化。通过比较遗传学,我将狗开发为人类疾病的模型,表征基因组本身并确定导致狗复杂疾病和癌症的生殖系基因座和体细胞突变列表。将所有这些发现和资源汇总在一起,为了解基因组进化、人类及其最好的朋友的复杂性状和癌症的遗传学打开了新的大门。
人工智能 (AI) 是设计为像人类一样思考和行动的机器。将 AI 放入虚拟世界,它们就被称为 AI 代理,它使用从训练中获得的知识在世界中执行任务。虚拟世界中的 AI 代理只能在复杂度和多样性有限的环境中使用专门的模型执行一组狭窄的任务。一个需要代理不断学习和适应各种开放式任务并使用先前获得的知识来确定下一步行动的丰富世界将使代理无能为力。为了研究用于指导代理执行 Minecraft 中的基本任务的 AI 教学方法,以确定哪种 AI 教学方法会产生最佳效果,进行了系统的文献综述,提取了 57 篇论文并确定了适合 AI 代理训练方法和功能的主题和子主题。这是为发现可以实施哪些 AI 训练方法,使代理能够在复杂而丰富的世界中执行任务,从而促进基于游戏的学习。研究发现,将强化学习 (RL) 方法与有效的奖励系统完美结合,可为代理提供必要的知识,使其能够在更复杂的层面上执行任务。RL 集成了一系列独特的方法,例如牛顿动作建议 (NAA)、行为克隆 (BC)、视频预训练 (VPT)、人类演示和自然语言命令,以实现特定目标。这意味着可以通过建立一个深思熟虑的框架来教导代理在复杂的环境中执行开放式任务,该框架涉及如何在各个领域教导代理,从而有可能通过基于游戏的学习将这些教导融入现实世界。关键词:基于游戏的学习;社会 5.0 教育;我的世界强化学习;AI 代理;训练 AI 代理
OpenAI 于 2022 年 11 月启动的 ChatGPT 引发了关于人工智能对高等教育影响的重要讨论。当学生使用它来撰写论文时,它打破了现状。与谷歌的 Gemini 和微软的 Copilot 一样,OpenAI 的 ChatGPT 是能够模仿人类对话的强大大型语言模型 (LLM) 的典型示例。大型语言模型在识别语言模式和预测上下文单词方面表现出色,并且擅长以最少的用户输入生成连贯且相关的文本响应。通过利用其广泛的训练语言模式数据库,大型语言模型可以提供准确反映用户输入上下文的生成文本响应。凭借对语言的掌握,他们可以创作创意诗歌,撰写全面连贯的文章,深入分析主题,并有说服力地提出论点。
摘要 本研究调查了 445 名中小学和高等教育教师,以了解他们在课堂上使用人工智能工具的情况。结果显示,虽然教师普遍对教育中的人工智能持积极态度,但只有 25% 的教师真正将基于人工智能的工具融入教学中。此外,最常用的工具是 ChatGPT、Dall-E 和 Midjourney。最后,中小学教师主要将人工智能用于内容创作目的,例如演示文稿、文本或视频,而不强调学生对人工智能工具的参与。相比之下,高等教育教师将人工智能用于学术技术目的,解释人工智能的功能、获取信息并让学生尝试使用人工智能工具,以及与研究相关的任务,如文本翻译或数据分析。基于这些结果,教育工作者的人工智能培训计划应针对每个阶段量身定制,除了常用的 ChatGPT 等人工智能工具外,还应纳入更广泛的人工智能工具。
注意:1. 技术研讨会:CIE 分数将由一个委员会评定,该委员会由担任主席的系主任、指导老师/联合指导老师(如果有)和系的一名高级教员组成。该课程的同一学期和其他学期的所有研究生必须参加研讨会。技术研讨会授予的 CIE 分数将基于对研讨会报告、演讲技巧和问答环节的评估,比例为 50:25:25。2. 实习:所有学生必须在第一和第二学期和/或第二和第三学期的假期期间进行为期 6 周的强制性实习。大学考试将在第三学期进行,规定的学分将在同一学期计算。实习应被视为及格,并应考虑授予学位。那些没有参加/完成实习的人将被宣布为实习课程不及格,并必须在满足实习要求后在随后的大学考试中完成实习。
人工智能 (AI) 是指计算机或机器执行通常需要人类智能才能完成的任务的能力,例如学习、解决问题、决策等。构建 AI 系统有几种不同的方法,包括机器学习(系统在数据集上进行训练,可以随着时间的推移提高其性能)和基于规则的系统(系统遵循一组预定的规则来做出决策)。
● 与学生进行清晰且频繁的沟通至关重要。在教师的期望和课堂上人工智能的使用方面,学生需要保持透明。对人工智能使用的期望因班级而异。经常讨论教师的期望、课程学习目标以及它们与相关学习活动和学生作业之间的关系(包括使用生成式人工智能),可以增强学生的学习体验,并最大限度地减少误解或误用的机会。 ● 生成式人工智能系统是技术工具。与 Blackboard、Zoom 甚至谷歌搜索等其他技术工具一样,生成式人工智能可用于积极支持严谨的学习并增强引人入胜的学习体验。 ● 生成式人工智能的使用将不断发展。教师和学生应负责任、有目的地、合乎道德地使用生成式人工智能。 ● 如果课程学习目标支持,教师应设计评估和学习活动,让学生可以利用生成式人工智能作为学习的机会。学生可以更好地实现他们的课程学习目标,并更多地了解使用生成式人工智能的好处和挑战。
这篇观点文章深入研究了阴阳理论的新颖融合 - 一个古代中国哲学基石 - 与复杂的免疫学领域。鉴于免疫学固有的复杂概念,许多学生发现理解有关免疫平衡和调节的微妙机制具有挑战性。鉴于中国学生对阴阳理论的深刻理解,我们主张采取一种教育策略,该策略将Yin-Yang框架内的免疫平衡概念背景而来,从而提供了更直观和引人入胜的学习经验。这种方法不仅利用了阳阳的文化意义,而且还对应于其平衡和和谐的原理,从而反映了免疫反应的稳态本质。本文批判性地评估了该技术在中国学生中增强免疫理解的能力,同时也考虑了其局限性。尽管存在这些局限性,但这些看似不同的领域的融合仍然具有增强免疫学教育,促进批判性思维和推进跨文化学术话语的实质性希望。古老的哲学见解与现代科学探索的融合促使免疫学内的教育方法进行了重新评估,强调了一种新颖的教学方法,该方法将传统智慧与当代科学教育联系起来。