这项调查的主要目的是确定尼泊尔莫朗区不同海拔不同森林林分之间的生物量和碳分布模式。值得注意的是,估计尼泊尔东森林相对较少的碳储备和生物量。估计五个不同森林地点的生物量和碳库存的数据,即。Bhaunne,Raja -Rani,Murchungi,Adheri和Sagma位于平均海平面100-1300m之间,是通过随机选择的库存图获得的。总共建立了50个样品图,在不同的高度区域的五个森林林座中建立。在每个森林地点,布置了10个20m×20m尺寸的样品图,以测量树木。在灌木和草药的情况下,分别建立了5m×5m和1m×1m的嵌套图。通过应用异形方程来促进树木和灌木的生物量的计算,而草药的生物量通过收获方法确定。使用灰分含量法估计植物材料中的碳浓度。对Bhaunne,Raja -Rani,Murchungi,Adheri和Sagma Forest地点的架子生物量的全面分析是:815.86 mg HA -1,414.19 mg HA -1,606.81 mg Ha -1,519.20 mg ha -1,519.20 mg ha -1,以及在29.96 mg a -1中的住所,分别是分别的。森林),在Bhaunne地点(低海拔森林)。同样,与Sagma遗址相比,在Bhaunne,Raja-Rani,Murchungi和Adheri站点的草药生物量中观察到了值得注意的变化。根据林分生物量的变化,森林站点的碳库存也显示出相同的趋势,但值在140.19 mg C HA -1至333.63 mg C HA -1之间,sagma位置的最小值范围为Bhaunne站点的最小值。弗里德曼测试的应用揭示了Murchungi和Sagma位点之间的树木生物量以及Adheri和Sagma位点之间的灌木生物量的统计学显着变化。本研究在碳管理上有助于理解森林生态系统。
Bering10k区域海洋建模系统(ROMS)模型是一种高分辨率(10公里)的区域海洋模型,在过去十年中,它在研究和管理环境中都用于研究物理环境与东部白令海货架生态系统之间的关系。以前已经对该模型进行了广泛的验证,尤其是专注于底温度,这是一个关键的物理驱动器,塑造了该区域的生态系统动力学。但是,先前对底温度的观察主要仅限于夏季。最新的弹出式浮球的部署能够越冬测量值,现在使我们可以将先前的验证扩展到其他季节。在这里,我们通过将新的弹出式片段中的数据与几个现有温度数据集相结合,从而在时间尺度上表征了东南白令海架上的底温度。然后,我们使用这种数据组合来系统地评估Bering10K ROM模型捕获这些功能的技能,重点是技能指标的空间变异性以及导致这些模式的潜在过程。我们确认该模型在底部温度井中捕获了整个架子的模式,包括平均模式以及季节性和年际变化。然而,还确定了一些潜在改进的领域:模型中低估的表面混合会导致中间和外部架子上的延迟破坏性,模型中内部前部的位置可能会稍微偏移,而在模型中,估计平滑的平滑性会导致较差的代表性差,可能是在货架上脱落的范围,并通过
在过去的50年中,世界愿景一直为中东和东欧地区最脆弱的儿童提供服务。我们正在高度脆弱的环境中领先,以确保最困难的地方最脆弱的孩子也得到支持,包括正在移动的孩子和受武装冲突影响的孩子。We currently work alongside local partners responding to humanitarian crises and operating long-term development projects that address gender disparity and other contextual issues in 15 countries across the region, including Albania, Armenia, Georgia, Bosnia and Herzegovina (BiH), Romania, Ukraine, Moldova, Iraq, the West Bank, Lebanon, Yemen, Syria, Jordan, Türkiye, and阿富汗。
摘要:南美东南部(SE-SA)的夏季降雨趋势近几十年来一直受到关注,因为它们对气候影响的重要性。已经确定了多种驾驶机制的趋势,其中一些具有相反的影响。仍然不清楚每种机制对观察到的趋势有多大贡献,或者它们的联合影响将如何影响未来的变化。在这里,我们解决了第二个问题,并研究了CMIP6夏季SE-SA降雨对温室变暖的反应如何通过与南半球对偏远驱动因素(RDS)区域气候变化的大规模术语相关的机制来解释。我们发现,结合了四个RD的影响,可以很好地表示区域不确定性:表面变暖的热带上层对流层扩增,平流层极性涡流分解日期的延迟以及两个RD的延迟表征了公认的热带Pacifical Pacifial Pacific-pacific-pacific-ficifcsSt变暖模式。应用故事情节框架,我们确定了导致最极端干燥和润湿场景的RD响应的组合。尽管大多数情况都涉及润湿,但如果高对于对流层的热带热带变暖和早期的平流层极性涡流分解条件与低中心和东部太平洋的变暖相结合,则可能会导致SE-SA干燥。我们还展示了SE-SA区域框的定义如何影响结果,因为表征动力学影响的空间模式是复杂的,并且如果在聚集时不考虑这些影响,则可以平均降雨变化。本文的观点和相关方法适用于全球其他地区。
本研究介绍了从曼尼普尔塞帕蒂地区收集的重要民族医学植物的数据。该领域缺乏现代医疗设施,并且仍在实践传统的医疗保健系统。从23名线人中记录了46个以下家庭的82种植物物种。开放式和半结构化的问卷用于收集数据。民族植物学指数用于指示民族医学的优势,意义和应用。最高的ICF值是肾脏疾病,一般健康或身体弱点和口腔护理,其次是皮肤病(0.76)。Rhus Chinensis Mill(0.52)具有引文值的最高相对频率,其次是Zingiber officinale Roscoe(0.39),Psidium guajava l。(0.39),Gynura cusimbua(d.don)S.Moore(0.35),牛角素Indimum(L.)Kurz(0.35)。汤剂(47%)是最常用的制备方法,其次是原始/新鲜(22%),糊状(8%),果汁(8%),压碎(10%),粉末(2%),输注(2%)和浸润(1%)。在我们的研究中,发现11种植物物种具有100%的富裕度。这些物种可能是具有潜在药理活性的新生物分子的真正自然储层。因此,通过文档和科学研究保护这种遗产是必不可少的要求。
靶标和结合渗透性降低,(iv)突变(7)。通过氨基糖苷修饰酶(AMES)对抗生素失活是对氨基糖苷耐药性的主要机制(8,9)。 AME由几个基因在细菌物种之间水平转移,从而产生其他细菌耐药机制(10)。 对氨基糖苷的抗性主要由五类AME介导,如下所示:Aminoglycoside-6'-N-N-乙酰基转移酶/2'' - O- o-磷酸溶质转移酶[AAC(6'')/APH(2'')]由AAC(6')/APH(6')/APH(2')/aph(2'')Gene; Aminoglycoside-3'-o-磷酸磷酸化酶III [APH(3')-III]由APH(3')-IIIA基因编码;氨基糖苷-4'-o-磷酸磷酸化酶i [ant(4') - i]由ant(4') - ia基因编码;由ANT(9) - I基因编码的氨基糖苷-9-O核苷酸转移酶I [ANT(9)-i]和ANT(6) - I Gene编码的ANT(9) - I基因和氨基糖苷-6-O-Nucleotidyltransferase I [ANT(6)-I]。 在葡萄球菌中,蚂蚁(4') - i,aac(6')/aph(2'')和aph(3')-III分别是影响毒霉素,庆大霉素和卡纳米霉素的最常见的AME(11)。 双功能AME AAC(6') / aph(2英寸)赋予对除链霉素以外的几乎所有氨基糖苷的抗性(12)。< / div> The aac(6')-Ie/aph(2")-Ia (also named aacA - aphD ) gene has been located on the plasmids, transposons such as Tn 4001 (in S. aureus ), Tn 5281 (in enterococci), and Tn 4031 (in S. epidermidis ) and the other mobile genetic elements, increasing the aminoglycoside resistance and the对其他化合物的抗性(13) 在欧洲,亚洲和南美国家中报道了高级庆大霉素耐药性(HLGR)的增加。 材料和方法通过氨基糖苷修饰酶(AMES)对抗生素失活是对氨基糖苷耐药性的主要机制(8,9)。AME由几个基因在细菌物种之间水平转移,从而产生其他细菌耐药机制(10)。对氨基糖苷的抗性主要由五类AME介导,如下所示:Aminoglycoside-6'-N-N-乙酰基转移酶/2'' - O- o-磷酸溶质转移酶[AAC(6'')/APH(2'')]由AAC(6')/APH(6')/APH(2')/aph(2'')Gene; Aminoglycoside-3'-o-磷酸磷酸化酶III [APH(3')-III]由APH(3')-IIIA基因编码;氨基糖苷-4'-o-磷酸磷酸化酶i [ant(4') - i]由ant(4') - ia基因编码;由ANT(9) - I基因编码的氨基糖苷-9-O核苷酸转移酶I [ANT(9)-i]和ANT(6) - I Gene编码的ANT(9) - I基因和氨基糖苷-6-O-Nucleotidyltransferase I [ANT(6)-I]。在葡萄球菌中,蚂蚁(4') - i,aac(6')/aph(2'')和aph(3')-III分别是影响毒霉素,庆大霉素和卡纳米霉素的最常见的AME(11)。双功能AME AAC(6') / aph(2英寸)赋予对除链霉素以外的几乎所有氨基糖苷的抗性(12)。< / div>The aac(6')-Ie/aph(2")-Ia (also named aacA - aphD ) gene has been located on the plasmids, transposons such as Tn 4001 (in S. aureus ), Tn 5281 (in enterococci), and Tn 4031 (in S. epidermidis ) and the other mobile genetic elements, increasing the aminoglycoside resistance and the对其他化合物的抗性(13)在欧洲,亚洲和南美国家中报道了高级庆大霉素耐药性(HLGR)的增加。材料和方法本研究试图确定金黄色葡萄球菌和编码AMES和FEMA的临床分离株中抗生素耐药性的频率,AMES和FEMA是金黄色葡萄球菌在金黄色葡萄球菌中表达甲基甲基蛋白耐药性必不可少的,并且还参与了北极蛋白酶蛋白酶的葡萄球菌细胞Wall的生物合成。
茶是世界上最广泛的饮料之一。它是生物活性化合物的丰富来源,包括epigallocatechin Gallate(EGCG),鲁丁蛋白,槲皮素,食道酸和单宁酸,它们已被广泛研究,以实现其潜在的健康益处。茶厂(Camellia sinensis)属于Camellia L.属和家族剧院。与其他植物相比,茶厂的次要代谢物不仅具有独特的治疗质量,而且使人类健康受益。作为重要的经济植物,已经在许多领域进行了茶,包括健康,粮食生产和文化。这些代谢产物具有抗氧化剂,抗菌和抗炎性特性,这可能有助于降低慢性疾病的风险,例如心血管疾病,癌症和神经退行性疾病。茶厂是多年生和
lentinus squarrosulus是一种野生食用的蘑菇,不仅用于其营养价值,而且还用于其药用和霉菌化潜力。这种蘑菇的驯化将使母亲文化和产卵进行研究和传播,并确保全年用于经济和可持续发展。组织培养,并将积极生长的菌丝体接种到谷物产卵上。使用来自各种木材物种的木屑进行了培养试验,包括非洲treculia(非洲面包果),Mangifera Indica(芒果),Dacryodes Edulis(非洲梨)和各种木材的混合木屑。底物被堆肥,消毒,用苏氏乳杆菌的产卵接种并孵育。收获的生长受到监测,记录和成果。驯化结果表明,母亲培养物是在14天内产生的5-7天内产生的,可用于研究和培养。L. squarrosulus菌丝体殖民了所有用于不同程度的基质,菌丝运行时间从30.4天到34.8天不等。在非洲T.上的菌丝体运行时间与D. Edulis有很大差异。从38天到68天成功收获了果实,最大的水果体数(40±9.47),最高收益率为89.03±29.41 g,从T. Africana获得了三个冲洗。接下来是M. Indica(35,54.27±14.64 g)。dacryodes edulis锯末记录的产量最低(23,32.31±11.34 g)。M. Indica木屑的直径最大(6.45±1.97 cm)和最长的齿状(2.83±0.49 cm)。总而言之,苏氏乳杆菌有可能在IMO州的Orlu中被驯化,而非洲锯齿状锯齿状木屑是合适的培养底物。关键词 - 耕种 - 可食用 - 蘑菇 - 木屑 - 组织文化 - 产量简介
跨木材的生态区是西方大平原大草原与东部的东部统一森林之间的边界。在整个20世纪,俄克拉荷马州的跨木森林对定居和管理进行了变化。20世纪之前,美洲原住民在跨木材中常用着火。20世纪由于欧洲裔定居者对火灾的恐惧,迎来了大规模的灭火努力和减少火力的使用。在景观上没有火灾,这是一种称为中型化的过程,从而使耐受的树木 - 在黑暗,茂密的森林中生长的树木 - 建立并最终使在充满阳光下生长的树木越来越多,并且更容易耐火。在跨木材中,这是由于缺乏火灾,其他干扰或其他使森林开放的管理实践,并导致橡木后(Quercus stellata)和二十一点橡树(Q. Marilandica)被其他树木胜过。主要竞争对手是东部Redcedar(Juniperus Virginiana),这是一棵本地树,历史上仅限于岩石露头和其他无法遇到火灾的地区。东部雷达达(Eastern Redcedar)已扩散到跨木材森林和开放的牧场,在那里迅速胜过其他本地树木和草。
总部位于英国的机构。东北大学成立于 1898 年,以其高影响力的研究而闻名,旨在解决全球问题。跨学科、体验式学习和与学术界以外的合作伙伴的联系是东北大学精神的核心。东北大学在 2022 年获得了 2.307 亿美元的外部研究资金,是公认的体验驱动终身学习的领导者。它在美国和加拿大设有校区(波士顿、北卡罗来纳州夏洛特、缅因州波特兰、加利福尼亚州奥克兰、旧金山、西雅图、硅谷、弗吉尼亚州阿灵顿、马萨诸塞州伯灵顿和纳汉特社区、多伦多和温哥华)。虽然博士学位将是英国的资格,但学生将有机会在伦敦博士研究期间参与和访问海外的东北大学网络,为他们的研究培训提供真正独特且备受追捧的维度。项目我们正在寻找一位有计算神经科学、数据科学、认知心理学或相关领域背景的积极进取的候选人,加入一个创新的博士项目,该项目涉及网络科学、机器学习和心理健康研究的交叉领域。该项目旨在开发尖端方法来整合和分析多模态数据——从认知评估和患者自我报告到神经影像和电子健康记录 (EHR)——以发现新的生物标志物并改善心理健康轨迹的分析。成功的申请者将采用自然语言处理 (NLP)、图论和先进的机器学习等技术来探索认知-情感模式和大脑连接动态,为理解心理健康建立一个统一的框架。这项跨学科研究有望推动个性化诊断和干预策略的进步。理想的候选人应该具备很强的分析和编程能力,对心理健康研究充满热情,并具有跨学科合作的能力。成功的候选人将: