克拉克曼南郡教育服务提供广泛的服务,以教育、保护、支持和促进儿童和年轻人、他们的家庭和社区的成就。这些服务由我们的学校、早期学习和儿童保育中心、额外的支持服务和遍布克拉克曼南郡的集中团队提供。通过这一战略,我们旨在确保通过与利益相关者(特别是儿童和年轻人自己及其家人)的合作,为所有学习者提供包容和平等的机会。我们的目标是消除儿童和年轻人可能遇到的任何障碍,使他们能够充分参与教育,并培养参与学校以外生活(现在和成年后)的技能。这种公平和包容的教育方法为我们提供了开发灵活学习解决方案的机会,而不是将教育视为“一刀切”的方法。随着时间的推移,满足个人独特且经常变化的需求需要我们既灵活又富有创造力。“为每个孩子做好事”(GIRFEC)是国家承诺,旨在为所有儿童、年轻人及其家庭在适当的时间提供适当的支持。这将使我们能够确保克拉克曼南郡的每个儿童和年轻人都能充分发挥他们的潜力。我们的人力资源部已咨询了儿童和年轻人、父母和照顾者、合作伙伴和员工,以更新我们的愿景和价值观。商定的价值观是:尊重、包容和合作。
2019 年 8 月 7 日 — 国防部情报采购司司长:osd.pentagon.ousd- · intel.list.acq-intel.div@mail.mil。• 美国空军...
当天的活动将以颁奖仪式结束,颁奖仪式由国家安全部司令、塞纳-马恩省军事代表保罗·桑泽 (Paul SANZEY) 准将主持。
用于 AI 模型的训练数据集,特别是用于训练语言模型的数据集。图书馆提供对大量文本语料库的访问,并促进 AI 内容的许可。加拿大大学图书馆非正式报告称,研究人员因学术出版商的糟糕工具和 AI 研究的高许可成本而受阻。这些工具价格昂贵、专有,并且缺乏研究人员所需的功能。TDM 活动的许可成本现在是大型跨国出版商的收入来源,要求图书馆多次支付使用相同内容的费用,尽管用途不同。此类行动体现了将所有用途商品化并从而缩小公共资源的动力,威胁公共利益并破坏了《版权法》在用户和权利人之间的平衡。
● 预读:查看随附的全面预读文档,该文档深入介绍了客户旅程和我们的战略要务。此外,请完整查看提供的市场研究见解。 ● 有研究支持的策略:根据提供的全面市场研究、内部数据分析和竞争情报,确定并提出三种高影响力的营销策略。这些策略应具有远见卓识,但又以数据为基础。 ● 投资回报率预测:对于每种策略,准备一份详细的第一年投资回报率预测。这应包括您的计算方法、预期成本、预期回报以及实现可衡量结果的时间表。使用数据驱动的见解来支持您的预测,确保它们是现实的和可实现的。 ● 演示:此策略和投资回报率预测的准备工作应记录在您带到辩论中的三张挂图上——每个策略一张挂图。准备在辩论中正式介绍您的发现——每人最多十五分钟或每个策略最多五分钟。 ● 辩论准备:做好准备,坚定地倡导您的策略。您应该准备好参与建设性而严谨的辩论,捍卫您的预测并考虑同行的反馈以改进您的方法。
放大和/或对齐:是否存在困境? / 放大和/或对齐:是否存在困境? Teresa Russo 萨勒诺大学法律科学系欧盟法副教授,EUWEB 负责人 萨勒诺大学法律科学系欧盟法副教授,EUWEB 负责人 西巴尔干加入过程中的民主与法治欧盟国家 / 西巴尔干国家加入欧盟过程中的民主与法治 Leonardo Pasquali 国际法副教授,Jean 领导人比萨大学莫内模块“欧盟法团结”(SoEULaw) 国际法副教授、比萨大学让·莫内模块“欧盟法团结”(SoEULaw) 负责人 巴尔干路线:欧洲大陆面临的挑战 /巴尔干路线:欧洲大陆面临的挑战 奥利维耶罗·福蒂 (Oliviero Forti) 负责“意大利明爱”移民政策 负责“明爱”移民政策意大利语”
识别导致神经遗传疾病的 DNA 变异的主要瓶颈是 VUS 的功能分析。本研究的目的是通过在 NPC 和斑马鱼中使用 CRISPR/Cas9 基因组编辑来开发一种方法,以对在巨脑回患者中观察到的候选致病变异进行建模。通过 aCGH 和 WES 分析了 20 名巨脑回/无脑回患者的 DNA,并确定了变异的优先级。通过使用 CRISPR/Cas9 基因组编辑在 NPC 和斑马鱼中生成突变系,并与已知在巨脑回/无脑回中发挥作用的三个关键基因(TUBG1、LIS1、DAB1)之一的模型进行了比较。使用 3D 基质胶腔系统 (ICChip) 对 NPC 进行表征,并在 3 dpf 和 5 dpf 时观察到发育中的斑马鱼的表型变化。使用 qPCR 对目标突变系和选定的变体系进行了比较。与对照组相比,在 3 个选定基因的突变 NPC 系中观察到迁移延迟。WES 确定了两个候选变体,CGREF1 和 NOL9。观察到 CGREF1KO 斑马鱼和 CGREF1KONPC 中无脑畸形和小头畸形相关基因和神经元分化基因的表达变化。在 Tubg1 突变斑马鱼中观察到严重的表型,包括小头和小眼,以及肝脏/肠道发育异常。我们的研究结果证明,使用 NPC 和斑马鱼模型可以以省时省钱的方式测试导致与 NPC 迁移相关的缺陷的变异。多组学分析可以进一步将这种方法的使用范围扩展到其他神经遗传缺陷组。该项目由 TUBITAKCOST Action 资助,代码号为 217S944。
向部落学生介绍空间科学、技术和印度在该领域的成就。 培养好奇心并激发对 STEM 领域(尤其是与空间相关的学科)的兴趣。 鼓励参与实践活动和竞赛,以提高创造力、批判性思维和团队合作精神。 突出空间科学和技术的职业道路,拓展学生的抱负和教育目标。
摘要 - 量子交换机(QSS)服务量子通信网络中量子端节点(QCN)提交的请求,这是一个具有挑战性的问题,这是一个挑战性的问题,由于已提交请求的异构保真要求和QCN有限的资源的异质性保真度要求。有效地确定给定QS提供了哪些请求,这是促进QCN应用程序(如量子数据中心)中的开发。但是,QS操作的最新作品已经忽略了这个关联问题,并且主要集中在具有单个QS的QCN上。在本文中,QCN中的请求-QS关联问题是作为一种匹配游戏,可捕获有限的QCN资源,异质应用程序 - 特定的保真度要求以及对不同QS操作的调度。为了解决此游戏,提出了一个量表稳定的request-QS协会(RQSA)算法,同时考虑部分QCN信息可用性。进行了广泛的模拟,以验证拟议的RQSA算法的有效性。仿真结果表明,拟议的RQSA算法就服务请求的百分比和总体实现的忠诚度而实现了几乎最佳的(5%以内)的性能,同时表现优于基准贪婪的解决方案超过13%。此外,提出的RQSA算法被证明是可扩展的,即使QCN的大小增加,也可以保持其近乎最佳的性能。I. i ntroduction量子通信网络(QCN)被视为未来通信技术的支柱,因为它们在安全性,感知能力和计算能力方面具有优势。QCN依赖于Einstein-Podolsky-Rosen(EPR)的创建和分布,这是遥远QCN节点之间的纠缠量子状态[1]。每个EPR对由两个固有相关的光子组成,每个光子都会转移到QCN节点以建立端到端(E2E)纠缠连接。然而,纠缠光子的脆弱性质导致指数损失,随着量子通道(例如光纤)的行驶距离而增加。因此,需要中间量子中继器节点将长距离分为较短的片段,通过对纠缠的光子进行连接以连接遥远的QCN节点[2]。当此类中继器与多个QCN节点共享多个EPR对以创建E2E连接时,它们被称为量子开关(QSS)。
