乳腺癌。然而,相关的耐药机制和毒性凸显了对这些癌症的新治疗方法的需求。我们最近发现,在正常细胞中,HER2 通过与埃兹蛋白/根蛋白/膜突蛋白 (ERM) 家族成员直接相互作用而稳定在催化抑制状态。在 HER2 过表达的肿瘤中,膜突蛋白的低表达导致 HER2 的异常激活。通过旨在寻找膜突蛋白模拟化合物的筛选,我们鉴定出依布硒氧化物。我们表明,依布硒氧化物和一些衍生物可有效抑制过表达的 HER2 以及突变和截短的致癌形式的 HER2,这些形式对目前的疗法具有抗性。依布硒氧化物选择性抑制 HER2 + 癌细胞的锚定依赖性和非锚定依赖性增殖,并与目前的抗 HER2 治疗药物联合使用具有显著的益处。最后,依布硒氧化物显著抑制了体内 HER2 + 乳腺肿瘤的进展。总之,这些数据证明依布硒氧化物是一种新发现的 HER2 变构抑制剂,可用于 HER2 + 癌症的治疗干预。
gbA2抗糖基糖酶对降低糖脂脂的降低gbA3 a腹葡萄糖基酰胺酶,降低糖磷脂脂糖gpx1 ebselen谷胱甘肽过氧化物酶过氧化物酶诱导的氧化应激GPX2 EBSELENE粘液酶GPX2 EBSELENE氧化物GPX2 E氧气氧化剂GPX3 E氧化剂氧化剂氧化剂GPX3 induced oxidant stress GPX4 Ebselen Glutathione peroxidase induced oxidant stress GPX5 Ebselen Glutathione peroxidase induced oxidant stress GPX6 Ebselen Glutathione peroxidase induced oxidant stress GPX7 Ebselen Glutathione peroxidase induced oxidant stress HIF1A 2-deoxy-D-glucose glucose metabolism - hypoxia-inducible factor-1 𝛼 HRH2 Famotidine Histamine response in inflammation HTR1A Cyproheptadine Serotonin and histamine receptor binding HTR2A Cyproheptadine Serotonin and histamine receptor binding HTR3A Cyproheptadine Serotonin and histamine receptor binding HTR2C Cyproheptadine Serotonin and组胺受体结合
摘要:在N-芳族残留物中多样化的25种类似物的Ebselen类似物,导致鉴定出迄今为止据报道的Sporosarcina pasteurii尿素的最有效抑制剂。存在二氢型苯环的存在引起了这1,2-苯二甲硅烷二唑-3(2 h)-Ones的特殊活性,而K I值在低皮摩尔范围内(<20 pm)。亲和力归因于在结合的初始步骤中,二催化苯环与αHis323和αarg39的π -π和π-阳离子相互作用增加。对整个蛋白酶中的尿液解抑制的互补生物学研究表现出非常好的效力(磷酸盐缓冲盐(PBS)缓冲液中的IC 50 <25 nm和尿液模型中的IC 90 <50 nm)对单次拟合的N-苯基衍生物的含量非常好。最活跃的类似物之一抑制的糊状尿素酶的晶体结构揭示了Cys322硫醇酸盐的复发性,从而产生了前所未有的Cys322-S-Se-Se-Se-Se化学部分。■简介
目标:我们假设为这项研究选择的一个或多个非抗生素候选者将证明针对金黄色葡萄球菌的抗生素活性。方法:我们确定了非抗生素药物(氨氯地平,硫酸,硫酸胺,ebselen和sertraline)针对甲级素链球菌的最低抑制浓度(MIC)和最低杀菌浓度(MBC)(MBC)(MBCS),用于使用微纯蓝酸盐蓝蓝色蓝色测量(MABA)(MABA)。我们的研究小组选择了从鼻和软组织感染患者的鼻和伤口拭子培养物中获得的临床分离株,这些植物在南德克萨斯州外科医学研究网络(STARNET)的初级保健诊所看到。结果:三种非抗生素药物的所有分离株均具有相同的麦氯地平:64μg/ml; Azelastine,200μg/ml;和舍曲林,20μg/ml。EBSELEN的MIC为0.25μg/mL(SA-29213,A1019和J1019),0.5μg/ml(A32和B60)和1μg/mL(B72)。氨氯地平,硫二胺和舍曲林的MBC在其麦克风稀释范围内,表明所有测试分离株的杀菌活性。ebselen MBC是高度高的稀释液,也表明所有测试分离株的杀菌活性。结论:总之,所有四种非抗生素均在体外活性在不同程度上针对金黄色葡萄球菌临床分离株。ebselen是所测试的四种非抗生素中最有效的。©2021作者。由Elsevier Ltd代表国际抗菌化疗学会出版。这是CC BY-NC-ND许可(http://creativecommons.org/licenses/by-nc-nd/4.0/)下的开放访问文章
二芳二酸(L -IDOA)残基硫酸乙酰乙酰胺(HS)和硫酸真皮(DS)中的残基。在MPS I中,低水平的溶酶体IDUA活性会导致HS和DS积聚在细胞中,从而导致包括大脑在内的多个组织和器官的进行性疾病。更严重的MP形式我通常会在生命的前十年内导致智力低下和过早死亡。有两种可用的MPS I:I)使用重组人IDUA静脉注射的酶替代疗法,[2]和II)造血干细胞移植以从健康移植细胞中产生IDUA,但是,两者都有实质性的限制。例如,替代酶不能越过血脑屏障(BBB),因此对神经系统症状没有影响,而造血干细胞移植具有很大的发病率和死亡风险。此外,两种治疗方法都非常昂贵。因此,需要越过BBB并缓解MPS I的神经系统症状的小分子药物的发展是可取的。小分子抑制剂目前正在探索作为溶酶体储存疾病的治疗方法。例如,与累积底物生物合成有关的酶的抑制作用已用于底物还原疗法。最近,研究了有机固核药物Ebselen(2-苯基1,2-苯甲甲硅烷二唑-3(2 h)-One),作为MPS I的潜在底物还原治疗。[3] Ebselen通过抑制L -IDOA生物合成降低了MPS I细胞中的糖胺聚糖积聚。但是,它无法减少MPS I鼠标模型中的糖胺聚糖积累。治疗溶酶体储存疾病的另一种常见小分子方法是药理学伴侣治疗(PCT)。在PCT中,伴侣分子通常是活性位点定向抑制剂,可以结合和稳定突变酶以防止其降解并改善运输到溶酶体。[4]一次在溶酶体的低pH环境中,伴侣分离导致
引起流行病/大流行病(例如SARS-COV-2)的新型传染病需要近期效率和实用的分层来治疗感染病毒感染的患者。这是因为开发特定的抗病毒药物/疫苗需要时间,在此期间,生命丧失/破坏。一种短期策略是利用某些FDA批准药物的非规定城市来靶向批判性病毒蛋白。1在这里,我们提出了一种结合进化(保守蛋白质结构域)和物理(控制Zn 2+结合Cys Cys反应性的因素)的多目标策略,以鉴定保守病毒结构域中的新药物靶标,并将其应用于SARS-COV-2。我们表明,在临床上安全的Zn驱射药物,disul ram和ebselen可以靶向高度保守的Zn 2+结合和/或催化性半胱氨酸(图1)在多个保守的病毒结构域中对SARS-COV-2复制必不可少的。