电子邮件:loweth@rowan.edu ramesh raghupathi; 2900 W.皇后巷,费城,宾夕法尼亚州19129年;电话:215-991-8405;电子邮件:rr79@drexel.edu stan B. Floresco; 2136 West Mall,卑诗省温哥华,V6T 1Z4,加拿大;电话604-827-5313;电子邮件:floresco@psych.ubc.ca Barry D. Waterhouse; 42 East Laurel Road,Suite 2200,Stratford,NJ 08084;电话:856-566-6407;电子邮件:waterhouse@rowan.edu Rachel L. Navarra; 42 East Laurel Road,Suite 2200,Stratford,NJ 08084;电话:856-566-6819;电子邮件:navarra@rowan.edu
帕金森氏病(PD)是一种与年龄相关的不可逆性神经退行性疾病,其特征在于,由于nigra nigra pars pars compacta(SNPC)的多巴胺能(DA)神经元的丧失引起的一种逐渐恶化的非自愿运动障碍。PD的两个主要病理生理特征是受影响神经元中包含体的积累,以及在Nigra pars compacta(SNPC)(SNPC)和氯肾上腺素(LC)中含有神经元素的DA神经元的主要丧失。包含体包含错误折叠和聚集的α-核蛋白(α -syn)纤维,称为刘易体。PD的病因和致病机制是复杂的,多维的,并且与环境,遗传和其他与年龄有关的因素的组合相关。尽管已经广泛研究了与PD的致病机制相关的个体因素,但尚未设想发现发现与统一的致病机制的整合。在这里,我们提出了一种基于当前可用的实验数据的独特的高代谢活性耦合的高代谢活性耦合的升高能量需求,提出了PD中SNPC和NE神经元变性的综合机制。所提出的假设机制主要基于这些神经元的独特高代谢活性升高的升高。我们认为,在PD中,SNPC和NE神经元中选择性的DA神经元的高脆弱性可能是由于细胞能量调节。这种细胞能量调节可能会引起这些神经元中氧化还原活性金属稳态(尤其是铜和铁)的DA和NE代谢失调。
©作者2024。Open Access本文是根据Creative Commons Attribution 4.0 International许可获得许可的,该许可允许以任何媒介或格式使用,共享,适应,分发和复制,只要您对原始作者和来源提供适当的信誉,请提供与创意共享许可证的链接,并指出是否进行了更改。本文中的图像或其他第三方材料包含在文章的创意共享许可中,除非在信用额度中另有说明。如果本文的创意共享许可中未包含材料,并且您的预期用途不受法定法规的允许或超过允许的用途,则您需要直接从版权所有者那里获得许可。要查看此许可证的副本,请访问http://创建ivecommons。org/licen ses/by/4。0/。Creative Commons公共领域奉献豁免(http://创建ivecommons。Org/publi cdoma in/Zero/1。0/1。0/)适用于本文中提供的数据,除非在数据信用额度中另有说明。
财政僵局最终成为一项重大政策失误——政府没有向系统注入资金以保持更高的增长,而是抑制了财政扩张。这些行动进一步收缩了企业支出,导致裁员和工资压缩,并削弱了消费者的购买力,实际上形成了一个负面反馈循环,加剧了信贷扩张乏力,并降低了增长预期。结果就是短期问题痛苦地转化为长期结构性问题。
如果连续CC患者在2015年至2017年间参加AMC AMC的门诊诊所,并对LV功能进行了TTE评估,则将其回顾性收集。对极端梯度提升(XGBoost)模型进行了训练,以预测全因5年死亡率。使用来自阿姆斯特丹UMC位置VUMC的数据评估了该ML模型的性能,并将其与传统风险评分的参考标准进行了比较。包括1253例患者(775例培训组和478次测试集),其中176例患者(105例培训组和71次测试集)在5年的随访期内死亡。与传统的风险分层工具(AUC 0.62-0.76)相比,ML模型表现出卓越的性能[接收器操作特征曲线(AUC)0.79]的表现出色,并且表现出良好的外部性能。ML模型中包含的最重要的TTE风险预测因子是LV功能障碍和明显的三尖端反流。
背景:限制频谱成像限制评分(RSIRS)是用于检测临床上显着前列腺癌(CSPCA)的定量生物标志物。但是,RSIR的定量值受到诸如Echo Time(TE)之类的成像参数的影响。目的:本研究的目的是开发一种校准方法来说明回声时间的差异,并促进将RSIR用作检测CSPCA的定量生物标志物。方法:这项研究包括197个经过MRI和活检检查的连续患者; 97被诊断为CSPCA(年级≥2)。rsi数据是三次获取的:在最小TE 〜75ms,一次在TE = 90ms(分别为Temin 1,Temin 2和TE90)时进行两次。对无CSPCA的患者进行了培训的一种拟议的校准方法,估计了RSI信号模型的四个扩散室(C)中的每个扩散室中的每个缩放系数(F)。确定了一个线性回归模型,将TE90的C映射与Temin 1的参考c映射匹配,范围为95 th thth
抽象的饮食失调,例如:PICA,反省,限制性/回避食物,神经厌食症,贪食症神经,强迫和另一种指定的饮食障碍,是精神病疾病和特征的饮食行为,其中个体在体重方面的态度以及体重的态度以及身体形式的感知。本研究旨在介绍系统的文献综述方案的发展,该协议旨在验证各种原因的饮食失调和死亡率之间是否存在关联,从而使饮食失调是否是心血管事件的风险因素。这项研究将根据Cochrane协作建议进行,并根据《元纳拉群落指南和观察性研究的系统评价指南》进行报告。由于该研究基于公开的证据,因此没有必要获得道德批准。系统审查的结果将在几个会议上介绍,并将在同行评审杂志上发表。该协议以CRD42022358832注册编号发行。最后,随着这项研究超出了该地区的科学知识的发展,预计它将对该领域有更多的了解,旨在朝着更长的寿命和更好的生活质量,以及降低与饮食障碍和心脏状况相关的致命结果,以及降低卫生系统的成本。关键字:营养科学;食物和食物摄入障碍;心血管疾病。抽象的饮食失调,定义为:PICA,反省,限制性/避免饮食,神经性厌食症,神经性贪食症,暴饮暴食和其他特定的饮食失调,是精神病疾病和特征是饮食不当的饮食行为,而不是个人对此的态度。重量及其对身体形状的看法受到干扰。本研究旨在介绍系统的文献综述协议的开发,该协议旨在验证是否存在关联
Barr,R.,Coombs,R.,Doonan,I。,&McMillian,P。(2002)。目标识别奥利奥和相关物种。渔业部研究项目的最终研究报告OEO2000/01B,目标1。http://fs。Fish。Govt。Nz/page。Aspx?aspx?PK = 113DK = 113DK = 22653 Bassett,C.,De Robertis,A。A.和Wilson,C。D.(2018)。宽带回声测量了阿拉斯加湾鱼类和欧盟的频率响应。ICES海洋科学杂志,75(3),1131–1142。 https://doi。Org/10. 1093/iCesj MS/FSX204 Benoit-Bird,K。J.和Waluk,C。M.(2020)。 探索宽带渔业的承诺会回荡着物种歧视的人,并对数据处理效果进行Quantative评估。 美国声学学会杂志,147(1),411–427。 https:// doi。org/10。1121/10. 0000594 Blanluet,A.,Doray,M.,Berger,L.,Romagnan,J.-B.,Bouffant,N.L.,Lehuta,Lehuta,S。和Petitgas,P。(2019)。 使用宽带声学,网和视频来表征比斯威湾中声音散射层的表征。 PLOS ONE,14(10),E0223618。 https:// doi。org/10. 1371/journal。pone。0223618Brautaset,O.,Waldeland,A.U.,Johnsen,E.,Malde,K.,Malde,K.,Eikvil,L. (2020)。 使用深卷积神经网络中的多频率回声数据中的声学分类。 ICES海洋科学杂志,77(4),1391–1400。 https://doi。org/10. 1093/iCesj MS/FSZ235Briseño-Avena,C.,Roberts,P.L。D.,P. L. D.,Franks,P.J。S.,&Jaffe,J.S。(2015)。 中的方法ICES海洋科学杂志,75(3),1131–1142。https://doi。Org/10. 1093/iCesj MS/FSX204 Benoit-Bird,K。J.和Waluk,C。M.(2020)。探索宽带渔业的承诺会回荡着物种歧视的人,并对数据处理效果进行Quantative评估。美国声学学会杂志,147(1),411–427。https:// doi。org/10。1121/10. 0000594 Blanluet,A.,Doray,M.,Berger,L.,Romagnan,J.-B.,Bouffant,N.L.,Lehuta,Lehuta,S。和Petitgas,P。(2019)。使用宽带声学,网和视频来表征比斯威湾中声音散射层的表征。PLOS ONE,14(10),E0223618。https:// doi。org/10. 1371/journal。pone。0223618Brautaset,O.,Waldeland,A.U.,Johnsen,E.,Malde,K.,Malde,K.,Eikvil,L.(2020)。使用深卷积神经网络中的多频率回声数据中的声学分类。ICES海洋科学杂志,77(4),1391–1400。 https://doi。org/10. 1093/iCesj MS/FSZ235Briseño-Avena,C.,Roberts,P.L。D.,P. L. D.,Franks,P.J。S.,&Jaffe,J.S。(2015)。 中的方法ICES海洋科学杂志,77(4),1391–1400。https://doi。org/10. 1093/iCesj MS/FSZ235Briseño-Avena,C.,Roberts,P.L。D.,P. L. D.,Franks,P.J。S.,&Jaffe,J.S。(2015)。zoops-o 2:宽带回声器,具有协调的stepeo光学成像,用于观察原位浮游生物。
摘要:本文分析了生物伦理学和法律在当前改善基因型和大脑技术发展中的作用。近年来,随着CRISPR/Cas9技术的发展,人们可以通过操纵自己的体细胞来改善自己的遗传状况。然而,理论兴趣更多地集中在生殖系上,因为与前者不同——前者会随着死亡而消失——它有能力影响后代的基因组。同样,借助新的 BCI 技术,个人可以将自己的大脑连接到 AI,以刺激和增强某些大脑区域。然而,无论从生物伦理学还是法律的角度来看,似乎都可以推断出普遍禁止改善干预。有什么合理论据支持这项禁令?人体是否是个人无法享有的商品?这是否是对意志自主权的不合理限制?
1电气和计算机工程系,德克萨斯大学奥斯汀,美国德克萨斯州奥斯汀; 2耶鲁大学医学院内科医学系心血管医学部,美国纽黑文市锡达街333号,美国康涅狄格州06520-8056; 3美国德克萨斯州大学车站,得克萨斯农工大学计算机科学与工程系; 4美国康涅狄格州纽黑文教堂5楼195 Church St 5楼的耶鲁 - 新避风港医院研究与评估中心; 5耶鲁大学医学院生物医学信息学和数据科学部分,美国康涅狄格州纽黑文; 6美国加利福尼亚州旧金山旧金山大学医学系; 7美国加利福尼亚州旧金山旧金山退伍军人事务中心心脏病学系; 8美国加利福尼亚州洛杉矶锡奈医学中心Smidt Heart Institute心脏病学系; 9美国加利福尼亚州洛杉矶的Cedars-Sinai Medical Center的医学人工智能司; 10美国康涅狄格州纽黑文市耶鲁大学公共卫生学院卫生政策与管理部;和11耶鲁大学公共卫生学院生物统计学系的健康信息学部分,美国康涅狄格州纽黑文市街60号1电气和计算机工程系,德克萨斯大学奥斯汀,美国德克萨斯州奥斯汀; 2耶鲁大学医学院内科医学系心血管医学部,美国纽黑文市锡达街333号,美国康涅狄格州06520-8056; 3美国德克萨斯州大学车站,得克萨斯农工大学计算机科学与工程系; 4美国康涅狄格州纽黑文教堂5楼195 Church St 5楼的耶鲁 - 新避风港医院研究与评估中心; 5耶鲁大学医学院生物医学信息学和数据科学部分,美国康涅狄格州纽黑文; 6美国加利福尼亚州旧金山旧金山大学医学系; 7美国加利福尼亚州旧金山旧金山退伍军人事务中心心脏病学系; 8美国加利福尼亚州洛杉矶锡奈医学中心Smidt Heart Institute心脏病学系; 9美国加利福尼亚州洛杉矶的Cedars-Sinai Medical Center的医学人工智能司; 10美国康涅狄格州纽黑文市耶鲁大学公共卫生学院卫生政策与管理部;和11耶鲁大学公共卫生学院生物统计学系的健康信息学部分,美国康涅狄格州纽黑文市街60号