摘要:本篇科学论文分析了工业区(尤其是波兰和乌克兰)实施可持续发展理念的现状和问题。重点关注了该理论主要条款的实施进度缓慢的问题,特别是工业企业违反环境要求和不遵守生态标准的问题。本文旨在寻找有效的创新工具,以加强工业区实施可持续发展战略的进程。本文采用理论方法——分析和综合、形式化、假设演绎建模、思维建模、系统化和概括——以及实证方法:观察、描述和比较。这项研究的主要成果是证实了科学观点,即通过利用新的信息和通信技术 (ICT) 及其创新工具(方法论、数字系统、互联网、云技术以及产品设计、制造和销售系统)加强生态营销过程,可以实施工业区可持续发展战略,这是由于通信链接的加速。本文提供了作者对工业区生态营销单一信息空间(领域)的创建和运作机制的开发方法,并对现代 ICT 及其工具进行了分类,这些工具适用于该机制。确定了它们的目的和预期结果,包括引入生态产品进行市场研究、开发生态技术以促进生态产品的生命周期,从而确定了对工业区可持续发展加速的影响。
妇科和乳房病理学研究金奖学金为受训者做好准备,他们有资格从事这些领域的临床实践,无论是在学术医学还是在大型的,基于高等教育的社区环境中。该计划将指导受训者在妇科和乳房标本中诊断技能发展的专业知识与相关细胞病理学的整合,包括使用组织病理学,细胞遗传学和分子诊断方法。在已知专家的指导下,研究员逐渐承担逐步责任,并将参与教学居民和医学生。艺术辅助实验室的状态使研究员暴露于新的诊断和预后研究中。在快节奏的环境中,解剖病理学的分裂每年接受3,700多个妇科(包括概念和胎盘产物),1,400乳房和500例咨询病例。实际上,妇科和乳房病理学服务是所有手术病理学的第二大病例的家园。如果需要,则可以在围产期病理学,细胞病理学,分子病理学或细胞遗传学中获得选举月。研究员能够发展和扩大他们的调查技能,并有望参与转化研究项目,最终在会议上发表摘要或论文和/或演讲。部门赞助商的旅行旅行在全国会议上展示他们的作品。程序亮点:
在21世纪,气候变化对根除疟疾的影响仍然不良25。许多研究集中在26个孤立的寄生虫和载体生态学上,忽略了气候,疟疾控制和27个社会经济环境之间的相互作用,包括极端天气的破坏性影响。28在这里,我们整合了有关气候,疟疾负担,控制干预措施,29个社会经济因素和非洲极端天气事件的25年数据。使用与共享的社会经济31途径2-4.5(SSP 2-4.5)方案相关的地理位置30模型,我们估计气候变化32对非洲疟疾负担的未来影响。33我们的发现表明气候变化可能导致1.23亿(投影范围为49.34亿 -2.03亿)造成疟疾病例和532,000例(195,000-912,000)35在目前的控制水平下,在2024年至2050年之间,非洲额外的死亡。36与普遍关注生态机制的关注相反,极端天气事件37是风险增加的主要驱动力,占38例其他病例中的79%(50-94%)和93%(70%-100%)的额外死亡。大多数增加是由于现有流行区而不是范围扩展的强化归功于39,其影响有40个区域差异。这些结果强调了迫切需要41种气候抗性的疟疾控制策略和强大的紧急响应系统42,以维护非洲消除疟疾的进展。43
预备课程 无 任何 先决条件 三年制学位期间获得的分子生物学基础知识 教育目标 本课程旨在为学生提供分子生物学的专业知识,特别关注细胞核中遗传信息的组织以及转录和基因表达的调控 预期学习成果(都柏林描述) 知识和理解 学生必须证明他或她理解并能够就染色质的结构和动态以及基因表达调控的转录和转录后机制展开讨论。学生还必须了解最常见的实验方法和
抽象的野生蜜蜂是本地和栽培植物的基本传粉媒介,但其种群在全球范围内正在下降。保护工作受到数据不足的阻碍,尤其是在地中海盆地中,该盆地拥有世界上一些最多样化的传粉媒介社区。尤其是在地中海最大的岛屿撒丁岛,关于蜜蜂动物区系的信息仍然有限。这项工作的目的是通过结合传统(基于形态的)分类法和DNA条形码,从东北萨尔迪亚(意大利)中未开发的半岛提供了apoidea anthophila的第一个清单。此外,还提供了鲜花的记录并在访客网络中显示,以丰富有关地中海地区野生蜜蜂与植物之间关联的稀缺数据。蜜蜂从2022 - 2023年4月至2023年10月进行采样。DNA以扩增线粒体基因cyotochrome氧化酶I的序列,然后将其与使用鉴定工具的BOLD进行比较,并通过构造邻居加入的系统发育树。收集并鉴定出属于29属的76种不同的物种和六个家族。对于61种不同的物种,总共获得了212个COI序列,其中许多物种尚未从意大利人群中测序。收集的五个分类单元是萨尔多 - 科尔斯裔人物,而六种是从撒丁岛新记录的。最后,我们重点介绍了潜在的分类问题和新的鲜花访问记录,强调需要进一步研究,以更好地了解这种多样化的昆虫的分类学和生态,以保护其保护。
1 美国华盛顿大学,西雅图,华盛顿州西雅图市98195,美国2阿拉斯加渔业科学中心,国家海洋和大气管理局,西雅图,西雅图,西雅图,98115,美国西北渔业科学中心,国家海洋和大气管理局,美国西部地区,西特,西雅图市,澳大利亚4112,美国,美国国家海洋和大气部,4。澳大利亚塔斯马尼亚州霍巴特,塔斯马尼亚州霍巴特,TAS 7001 6北太平洋研究委员会,AK 99501,美国7环境防御基金,西雅图,西雅图,华盛顿州98112,美国8合作社气候研究所,海洋和生态系统研究,海洋和生态系统研究,华盛顿大学,西雅图大学,西雅图,西雅图,西雅图,西澳州98105,美国98105,美国国家环境实验室。美国加利福尼亚大学圣克鲁斯大学海洋科学渔业合作计划,美国115060,美国11海洋伙伴,Inc。,与西北渔业科学中心,国家海洋和大气管理局,西雅图市西雅图市,华盛顿州西雅图市98112,美国西雅图市,美国西雅图市,美国西特,12 12 12日,美国西部,西特,西雅图,华盛顿州西雅图市98101,美国13号,美国13.美国13.13访问。 西北渔业科学中心,国家海洋与大气管理局,西雅图,华盛顿州98112,美国14美国海洋与渔业研究所美国华盛顿大学,西雅图,华盛顿州西雅图市98195,美国2阿拉斯加渔业科学中心,国家海洋和大气管理局,西雅图,西雅图,西雅图,98115,美国西北渔业科学中心,国家海洋和大气管理局,美国西部地区,西特,西雅图市,澳大利亚4112,美国,美国国家海洋和大气部,4。澳大利亚塔斯马尼亚州霍巴特,塔斯马尼亚州霍巴特,TAS 7001 6北太平洋研究委员会,AK 99501,美国7环境防御基金,西雅图,西雅图,华盛顿州98112,美国8合作社气候研究所,海洋和生态系统研究,海洋和生态系统研究,华盛顿大学,西雅图大学,西雅图,西雅图,西雅图,西澳州98105,美国98105,美国国家环境实验室。美国加利福尼亚大学圣克鲁斯大学海洋科学渔业合作计划,美国115060,美国11海洋伙伴,Inc。,与西北渔业科学中心,国家海洋和大气管理局,西雅图市西雅图市,华盛顿州西雅图市98112,美国西雅图市,美国西雅图市,美国西特,12 12 12日,美国西部,西特,西雅图,华盛顿州西雅图市98101,美国13号,美国13.美国13.13访问。 西北渔业科学中心,国家海洋与大气管理局,西雅图,华盛顿州98112,美国14美国海洋与渔业研究所美国华盛顿大学,西雅图,华盛顿州西雅图市98195,美国2阿拉斯加渔业科学中心,国家海洋和大气管理局,西雅图,西雅图,西雅图,98115,美国西北渔业科学中心,国家海洋和大气管理局,美国西部地区,西特,西雅图市,澳大利亚4112,美国,美国国家海洋和大气部,4。澳大利亚塔斯马尼亚州霍巴特,塔斯马尼亚州霍巴特,TAS 7001 6北太平洋研究委员会,AK 99501,美国7环境防御基金,西雅图,西雅图,华盛顿州98112,美国8合作社气候研究所,海洋和生态系统研究,海洋和生态系统研究,华盛顿大学,西雅图大学,西雅图,西雅图,西雅图,西澳州98105,美国98105,美国国家环境实验室。美国加利福尼亚大学圣克鲁斯大学海洋科学渔业合作计划,美国115060,美国11海洋伙伴,Inc。,与西北渔业科学中心,国家海洋和大气管理局,西雅图市西雅图市,华盛顿州西雅图市98112,美国西雅图市,美国西雅图市,美国西特,12 12 12日,美国西部,西特,西雅图,华盛顿州西雅图市98101,美国13号,美国13.美国13.13访问。 西北渔业科学中心,国家海洋与大气管理局,西雅图,华盛顿州98112,美国14美国海洋与渔业研究所美国华盛顿大学,西雅图,华盛顿州西雅图市98195,美国2阿拉斯加渔业科学中心,国家海洋和大气管理局,西雅图,西雅图,西雅图,98115,美国西北渔业科学中心,国家海洋和大气管理局,美国西部地区,西特,西雅图市,澳大利亚4112,美国,美国国家海洋和大气部,4。澳大利亚塔斯马尼亚州霍巴特,塔斯马尼亚州霍巴特,TAS 7001 6北太平洋研究委员会,AK 99501,美国7环境防御基金,西雅图,西雅图,华盛顿州98112,美国8合作社气候研究所,海洋和生态系统研究,海洋和生态系统研究,华盛顿大学,西雅图大学,西雅图,西雅图,西雅图,西澳州98105,美国98105,美国国家环境实验室。美国加利福尼亚大学圣克鲁斯大学海洋科学渔业合作计划,美国115060,美国11海洋伙伴,Inc。,与西北渔业科学中心,国家海洋和大气管理局,西雅图市西雅图市,华盛顿州西雅图市98112,美国西雅图市,美国西雅图市,美国西特,12 12 12日,美国西部,西特,西雅图,华盛顿州西雅图市98101,美国13号,美国13.美国13.13访问。西北渔业科学中心,国家海洋与大气管理局,西雅图,华盛顿州98112,美国14美国海洋与渔业研究所
一般权利 一般权利 PEARL 中的所有内容均受版权法保护。作者手稿根据出版商政策提供。请使用项目记录或文档中提供的详细信息仅引用已发布的版本。在没有开放许可证(例如知识共享)的情况下,应从出版商或作者处获得进一步重复使用内容的许可。 删除政策 删除政策 如果您认为此文档侵犯了版权,请联系图书馆提供详细信息,我们将立即删除对该作品的访问权限并调查您的索赔。 关注此作品和其他作品:https://pearl.plymouth.ac.uk/secam-research
在过去的30年中,妇科医生扩大了手术范围,包括少量干扰手术。机器人辅助手术的优点包括使用联合遗嘱工具,控制震颤的能力,并在三维(3D)立体视图中查看和操纵组织。它已于2005年获得美国食品药品监督管理局(FDA)的批准,使用DA Vinci手术系统进行了有限的妇科操作。目前,该系统是市场上唯一经FDA批准的机器人阶段。与传统腹腔镜检查相比,该平台有许多优势,包括术后不适,改善外科医生人体工程学,对仪器曲线的更快分析,消除支点效应以及荧光技术的更有序整合以进行淋巴血管估计。自1980年代初以来,圈逐渐发展[1]。尽管采用了最初的采用速度,但LAP花了四十年的时间才能成为标准方法。毫无疑问,膝盖比开放手术具有许多优势。与传统的开放手术相比,使用小切口和专门的手术器械可以最大程度地减少对周围组织的损害。这会导致疼痛减轻,减少失血,术后并发症的较少,住院时间较短,恢复速度更快,发病率较低[2]。
