Mertihan Kurdo ğlu 毕业于哈塞特佩大学医学院医学系(英语)。2001 年至 2005 年,他在加齐大学医学院妇产科完成了妇产科专业学习。2006 年,他在 Çankırı 州立医院担任专家。2007 年至 2014 年,他在 Van Yüzüncü Yıl 大学医学院妇产科工作。2014 年至 2016 年,他在加齐大学医学院妇产科工作,在此期间,他被加齐大学派往美国德克萨斯州加尔维斯顿德克萨斯大学医学分校妇产科微创妇科和研究部,并接受了机器人手术副教授的培训。 Gökhan Sami Kılıç 教授。他在国内外期刊上发表了 150 多篇科学论文,引用次数超过 2100 次,并在国内外教科书中撰写了 7 个章节。他曾担任 Van Medical Journal 编辑委员会成员、Turkish Journal of Obstetrics and Gynecology 编辑和 Eastern Journal of Medicine 主编。目前,他与 Arash Khaki 教授共同担任 International Journal of Women's Health and Reproductive Sciences 的主编。
增强学习和模拟 AI 在妇产科培训中的主要优势之一是它能够通过逼真的模拟提供增强的学习体验。人工智能驱动的虚拟现实 (VR) 和增强现实 (AR) 平台允许住院医师在受控且无风险的环境中练习各种程序,例如盆腔检查、缝合甚至复杂的手术。这些模拟为住院医师提供了一个安全的空间,让他们可以在对实际患者进行手术之前获得实践经验、发展他们的技术技能并提高他们的信心。人工智能算法可以提供实时反馈,指出错误并提出改进建议,从而有助于技能改进。2
海洋生态学中的机器学习是彼得的技术和应用垃圾的ovreriew;布罗迪,斯蒂芬妮;科尔迪尔,特里斯坦;右Barcellos,Dogo; Devos,保罗;何塞(Jose)的费尔南德斯·萨尔瓦多(Fernandes-Salvador);我芬纳姆,詹妮弗;戈麦斯,亚历山德拉;尼尔斯的奥拉夫·汉德加德(Olav Handegard);豪厄尔(Kerry L。); Jamet,Cédric;凯尔尔(Kyrre)的Heldal Kartveit; Hassan Moustahfid;辣椒,克莱亚;政治家,迪米特里斯; Sauzède,Raphaëlle;玛丽亚索科洛娃;劳拉的Uusitaro; Van den Bulcke,毕业; TM Van Helmond,Aloysius;沃森,约旦;韦尔奇,希瑟;贝尔特兰·佩雷斯(Beltran-Perez),奥斯卡(Oscar);小杂货店,塞缪尔(Samuel); S Greenberg,David;库恩(Kühn),伯恩哈德(Bernhard); Kiko,Rainer; LO,Madiop; m lopes,鲁本斯;克拉斯的莫勒(Möller)迈克尔斯,威廉;铲子,艾哈迈德; Romagnan,Jean-Baptiste;舒切特,皮亚; Seydi,Vahid; Villathy,塞巴斯蒂安;马尔德,凯蒂尔;艾里森(Jean-Loyvier ICS)艾里森(Irisson)
在Teja Tscharntke的一些关键论文中摘要建立了摘要,我们讨论了许多复杂性的农业系统和农业景观,我们认为应该将其包括在未来的生产景观研究中。我们认为,现代农业景观对生物多样性友好型的转型需要将农业措施,土地利用实践和景观措施的结合,但也需要支持较少强化生产的政策。我们认为,在未来的研究中,景观生态学家应承认生物多样性的多重价值,并使用这些价值的简单物种丰富度指标放弃。生态学家宁愿专注于了解什么物种及其相互作用实际上在生产生态系统中所做的。被拒绝了景观生态学的一些神话,例如全球粮食稀缺,土地少量和强化农业是可持续粮食生产的基准。我们表明,全球农业系统根深蒂固,这阻碍了更可持续的生产系统的发展。为了将当前的农业系统转变为可持续生产和生物多样性友好的景观,我们需要更广泛的观点,以结合对社会生态系统和过程的知识和理解。我们以瑞典粮食系统的四种未来场景来体现这一点,这些情况以不同的方式建议为生物多样性目标做出贡献,尽管也许不是通过Teja和许多其他生态学家所设想的对生物多样性友好的景观。
农业生态学作为一种系统方法,可以很好地解决粮食生产系统在多个尺度上为生物多样性施加的复杂挑战[1,2]。因此,它为各国提供了一种全面的方法,可以在全球生物多样性框架(GBF)下履行其承诺。这是一个多功能系统,可以有效地解决食品生产系统对不同级别的生物多样性提出的复杂问题。通过大规模拥抱农业生态学,例如,通过将其集成到国家生物多样性战略和行动计划(NBSAPS)中,国家可以同时实现与减少对生物多样性威胁的威胁以及满足人们的需求以及可持续使用和利益 - 福利和利益 - 享受的目标[3]。
虱子,臭虫,tick虫,水ches和其他微小的吸血的爬行生物被视为讨厌的吸血鬼,引起瘙痒,引起令人恶心的感觉,使人类和动物疾病探向人类和动物疾病,从而带来了有关人类社会的医疗,健康,健康,卫生和精神问题(Lehane Socieities(Lehane)(Lehane),Lehane,2005年)。除了它们携带和传播的微生物病原体外,独特的微生物与它们相关,并以多种方式影响其生理,生态学和其他生物学方面(Rio等,2016; Husnik,2018)。例如,他们的食物,脊椎动物的血液肯定是营养丰富的,但没有一些重要的营养素,例如B族维生素。因此,许多流血器具有称为细菌的专业器官,用于托管维生素养育共生体(Buchner,1965年),这使它们只能在血液粉上壮成长(Duron和Gottlieb,2020年)。完全充血的血液喂食器表现出充满挑战的肠道环境,具有大量的蛋白质,铁,血红素和抗微生物成分,例如抗体和补充,这可能会促进独特的肠道微生物组(Sterkel等,2017)。由于高通量DNA测序技术的最新发展,我们对与这些吸血无脊椎动物相关的微生物组的了解,必须与它们独特的喂养习惯和生理学有关,这已经迅速增长。因此,这个研究主题是“吸血节肢动物和其他动物的微生物伴侣:与其生理,生态和进化的相关性”旨在为这项研究网络中出现的新发现提供一个论坛。In total, nine articles and two reviews are compiled, which showcase the microbial associates of a diverse array of blood-feeding invertebrates including lice (Insecta: Psocodea), tsetse flies (Insecta: Diptera), fleas (Insecta: Siphonaptera), ticks (Arachnida: Ixodida) and mites (Arachnida: Mesostigmata)来自
背景骨盆底疾病(PFD)是常见疾病,可以显着影响女性的生活质量,包括骨盆器官脱垂(POP),尿失禁(UI)和粪便失禁(FI)。大约25%的女性经历了至少一个PFD,而在65岁以上的女性中,这一百分比可能更高,因为众所周知,所有PFD在更年期后都会增加。1,2个妇女健康研究的资金不足。一项2021年的研究发现,在疾病中,国家卫生研究院(NIH)的资金数量不成比例,这是男性主导的疾病。作者发现,在大约75%的病例中,将提供给男性主导疾病的资金。3除了分配给妇女健康的NIH研究资金量少,大多数人都用于涉及生殖妇女的研究,并且通常专门分配给怀孕和产假问题(https://///orwh.od.od.od.od.gov/sites/sites/sites/sites/orhorwh/orwh/files/files/files/docs________________________2019。201019。4妇女健康研究办公室(ORWH)指出,从2017财年到2019财年,疾病,状况和特别倡议的总体NIH研究支出的比例,只有10%分配给妇女健康研究;但是,在同一年,尽管妇女在少数人的一生中度过了少数人
1 斯坦福大学地球系统科学系,美国加利福尼亚州斯坦福;2 劳伦斯伯克利国家实验室地球与环境科学区,美国加利福尼亚州伯克利;3 加州理工学院喷气推进实验室,美国加利福尼亚州帕萨迪纳;4 国家生态观测网络,美国科罗拉多州博尔德;5 落基山生物实验室,美国科罗拉多州克雷斯特德比特; 6 美国加利福尼亚州伯克利加利福尼亚大学环境科学、政策与管理系;7 美国科罗拉多州杜兰戈刘易斯堡学院环境与可持续发展系;8 美国亚利桑那州立大学生命科学学院,亚利桑那州坦佩;9 美国加利福尼亚州山景城谷歌公司;10 美国地质调查局地球科学与环境变化科学中心,美国科罗拉多州丹佛市;11 美国加利福尼亚州门洛帕克 SLAC 国家加速器实验室
•有机物的类型(树/植物根,植物垃圾,微生物等)影响土壤肥力。•植物垃圾(例如叶子)由微生物(细菌,真菌等)分解在腐殖质中•讨论腐殖质的外观及其好处,例如结合土壤,保留防止浸出的水分,深色吸引阳光(热),微生物在等等等。•落叶树(秋天的叶子损失)导致下面有很多腐殖质的创造。大都柏林地区的棕色土壤•针叶树 - 松针具有酸性pH,微生物无法在其中发挥作用,因此无法创建腐殖质,例如爱尔兰西部的任何山脉•通常在寒冷的山地上发现的针叶树 - 微生物也不适合寒冷条件•图表 - 落叶树 - 叶子掉落,土壤中的earth和earths
摘要 水平基因转移 (HGT) 可以使一种细菌物种中进化的性状转移到另一种细菌物种中。这有可能迅速促进新的适应轨迹,例如人畜共患疾病转移或抗生素耐药性。然而,要做到这一点,需要在给定的时间范围内消除重组障碍。这些障碍中最重要的是生态环境不同的物种在不同的生态位中的物理分离。在弯曲杆菌属中,存在生态环境各异的物种,从很少孤立的单宿主专化者到多宿主通化者,它们是人类细菌性胃肠炎最常见的全球病因。在这里,通过表征这些对比鲜明的生态环境,我们可以量化自然种群中同域和异域物种的 HGT。通过分析 30 种弯曲杆菌基因组中的受体和供体种群血统,我们发现在同一宿主中共存可导致物种间的 HGT 增加六倍。这占特定物种内所有 SNP 的 30%,并识别出具有宿主适应性和抗菌素耐药性等功能的高度重组基因。正如在一些动物和植物物种中所描述的那样,生态因素是细菌物种形成的主要进化力量,宿主景观的变化可以通过 HGT 促进不同物种的部分趋同。