IHP宣布了一个免费的MPW程序,该程序将使用OpenRoad作为其芯片设计流的工具之一。这标志着实现新的铸造厂的另一个里程碑,该铸造厂为学生,教育工作者和行业的原型应用程序提供了使用IHP-SG13G2 BICMOS技术,该应用程序由OpenRoad Flow作为OpenPDK支持。这项技术可在130nm处使用数字,模拟以及混合信号应用,以适用于包括RF在内的更广泛的应用。Eth Zurich标准化了基于其CHIP设计课程的OpenRoad流量的课程。他们正在建立由德国联邦教育和研究部资助的证书课程,以帮助参与者与IHP一起使用OpenRoad建立筹码。IHP目标研究人员和职业发展计划正在开发的这些OS-EDA课程。
摘要椰子(Cocos nucifera L.)是一种多年生作物,可提供主食,并在许多发展中国家用作经济作物。其生产主要受气候,土壤和疾病的影响。温室气体(GHG)排放构成的威胁,尤其是负责全球变暖和气候变化的二氧化碳(CO 2),呼吁迫切需要减轻气候变化,通过探索环境友好的方式来隔离气氛。椰子养殖及其农业生态系统是可以通过固存存储CO 2的方法之一,并有助于减少大气中存在的CO 2的当前增加。尽管椰子种植园具有与热带森林相似的特征和功能,但它的能力比热带森林更好。除了椰子种植还改善了农民的收入和生计外,这对于利用基于椰子的农业生态系统的潜力来碳固存,以及碳交易所需的投资机会,以及帮助气候变化适应和缓解计划所需的投资机会。
随着生态系统方法的越来越多地是可持续发展政策不可或缺的一部分,海洋和沿海生态系统服务(ESS)的经济估值已与告知决策过程的信息有关。通过包含书目计量,网络和内容分析的综合方法,该综述旨在分析在海洋和沿海ESS经济估值中,科学文献的进化趋势,主要的研究簇以及科学文献的研究差距。文献计量结果表明,研究领域正在经历不断发展的积极趋势,并且代表了一个具有挑战性的研究主题。从网络和关键字共发生的覆盖可视化中,研究结果全面解决了关键的与策略相关的问题。在内容分析中,对对科学研究产生最大影响的研究使用的估计ESS和经济评估方法进行了检查。发现,尽管研究提供了有价值的数据和见解,但由于上下文相关性和偏见问题,它们在决策中的实际适用性是有限的。总体而言,审查强调了对更好地为现实世界政策决策提供范式转变的需求,从而确定海洋空间规划(MSP)过程是在未来的研究和政策实施中弥合这些差距的关键框架。
微证书是对传统资格认证的补充。它们是短期课程,学分为 1 到 15 个 ECTS(欧洲学分转换与累积系统)学分,如 ECTS 指南 [1] 中所述。这些课程使学习者能够获得符合社会和劳动力市场需求的特定能力和技能,如欧盟委员会的 2024 年战略 [2] 中所述。欧盟委员会的这一倡议旨在建立一个欧洲层面的标准,使这些教育经历的学习成果得到雇主、学习者和教育培训机构的认可和理解。这是欧洲教育区的一个关键组成部分。以此方式,2023 年 6 月,高校部提出了微证书计划(Microcreds),并在 2024-2026 年期间为其发展提供了 5600 万欧元的经济资助 [3]。在西班牙,一群大学创建了西班牙开放硬件联盟 (SOHA),该联盟以教育、研究和创新为范式。SOHA 的目标是扩大开放硬件的使用,其成功策略基于 RISC-V 架构和 Linux 的使用。RISC-V 代表了处理器架构的发展机会,因为其指令集 (ISA) 不需要支付许可费或版税。这为我们提供了确保协作和高效发展的机制,无论是在国家还是欧洲层面。此外,SOHA 还推动与其活动领域相关的联合国可持续发展目标 (SDG),例如提高能源效率、减少碳足迹、提高经济生产力、平等机会、增加信息和通信技术 (ICT) 的使用,以及基于上述三个基本支柱的协同作用的协作演进 [4]。
气候变化以温度和降雨的长期趋势为特征,近年来已经成为一个突出的关注(Seddon等,2016),对森林和草原生态系统的全球碳,水和能量周期产生了重大影响。此外,极端天气事件的频率增加可能会对各种陆地生态系统产生毁灭性后果(IPCC,2023年)。为了进一步研究气候变化对森林和草原生态系统的影响,并支持中国达到其达到其峰值二氧化碳排放和碳中立目标的努力,提出了这一研究主题。该研究主题包括23篇原始研究文章和1篇意见文章,介绍了以下领域的最新进展:(1)森林和草地生态系统响应气候变化的碳,水以及能量循环,以及(2)植被特征和生态系统稳定性的响应和适应性。
不同的生物多样性维度越来越受到赞赏,这对于维持生态系统及其对人类的服务至关重要。最近,随着功能生物地理学的出现,功能多样性特别感兴趣,因为它与碳,水和能源交换以及气候缓解等生态系统过程的密切联系。多种多样性在空间和时间上有所不同。了解这种范围的这种变化对于跟踪地球生态系统的弹性很重要,并且有关生态系统结构特征的信息为监测提供了必要的基础,预测生态系统功能模式和生态系统的过程,以整体方式从单个单位到整体。最近,关于生物多样性监测和测量的高分辨率,高通量,非侵入性和大规模数据正在成为提高生态发现中效率和相干性的新趋势。遥感被证明是解决这一研究差距的关键技术。在不同级别的空气和卫星传播光谱仪可以在各种生态系统以及各种社区和分类单元中开发新颖的多样性测量和替代方案。在本研究主题中,我们的目标是将最新的研究汇总到一个快速增长的方向上,该研究结合了遥感技术及其在生物多样性和生态系统功能(BEF)中的应用。我们想知道,从物种到生态系统的不同水平的生态理论如何通过多尺度的数字化观察和计算方法的进步来比以往任何时候都更加连接。从本研究主题的11篇发表论文中可以看出,我们概括了该领域的三个主要方向:(1)生物多样性的新型观察技术及其应用,(2)用地球信息学方法宏观的生态系统功能评估,以及
Farmer.CHAT 的成功商业用例已引起公共部门合作伙伴的大量需求。Digital Green 已筹集 3000 万美元,用于支持印度、肯尼亚和埃塞俄比亚农业部开发和推出类似的人工智能农学聊天机器人,目标是覆盖超过 2.2 亿人
此外,美国公开谴责中国网络间谍活动的策略转化为对更复杂和更谨慎的网络行动的需求。这导致历史上的中国 APT(例如归因于解放军的 APT1)从安全研究人员的雷达上消失,而其他 APT 则出现了。这可以通过作战单位的内部重组和攻击的更高复杂程度来解释。
摘要。本文提出了一种建模方法,旨在季节性地解决全球气候和土壤对陆地生态系统生产和土壤微生物呼吸模式的控制。我们使用卫星图像(高级甚高分辨率辐射计和国际卫星云气候学项目太阳辐射),以及来自全球(1 o)数据集的历史气候(每月温度和降水量)和土壤属性(质地、C 和 N 含量)作为模型输入。卡内基-艾姆斯-斯坦福方法 (CASA) 生物圈模型按月运行,以模拟植物净碳固定、生物量和养分分配、凋落物、土壤氮矿化和微生物 CO2 生成的季节性模式。模型估计的全球陆地净初级生产力为 48 Pg C yr -•,最大光利用效率为 0.39 g C MJ -• PAR。超过 70% 的陆地净产量来自
