反对的论点:•仍然有很多废物(未回收)•仅少量减少了总废物•一年(2006年),总废物总数增加了•回收百分比的增加速率正在减慢速度降低了•没有重复使用的材料信息•没有关于工厂 /行业 / div> div / div> div / div> div / div> div / div> div / div> div / div> div / div> div / div> div / div> div / div>
背景和目标:低密度聚乙烯是海洋中主要的顽固塑料污染物之一,从而导致复杂的问题。生物降解是克服这些问题的有效,环保且可持续的选择。这项研究旨在定量和定性地分析海洋细菌分离株降解低密度聚乙烯塑料的能力。方法:使用连续稀释技术从塑料样品中分离细菌,并在含有低密度聚乙烯粉末的培养基上接种。基于体重减轻百分比和能量X射线光谱值对细菌降解能力进行定量分析,并基于使用扫描电子显微镜和傅立叶变换红外光谱的物理和化学结构的变化进行定性分析。同时,根据基因序列和系统发育分析鉴定了细菌分离株。发现:从低密度聚乙烯塑料样品中分离出四个细菌分离株。定量分析发现,低密度聚乙烯膜在孵育35天内的体重减轻高达10-15%,每天的最大每日减肥率为每天0.004毫克,这意味着四种细菌分离株有可能降解塑料。同时,基于扫描电子显微镜观测值的定性分析揭示了膜表面的物理结构的变化,形式是粗糙的表面,孔的形成,并分解为整个膜表面的团块。测试了这些变化的变化。IBP-1,芽孢杆菌。在控制中,没有发生变化,膜表面保持平坦而光滑。相反,能量分散X射线光谱谱分析的结果表明,低密度聚乙烯膜破裂成较小的片段,其特征是质量从98.51%降低至98.23%。傅立叶变换红外观察结果显示出透射率和波数的变化,表明在低密度聚乙烯膜中化学键或官能团的变化,这使其变得脆弱并破坏成较低分子量的较小片段,使细菌更容易消化。基因序列分析的结果鉴定了四个细菌分离株,即淋巴西杆。IBP-2,帕果杆菌IBP-3和蜡状芽孢杆菌IBP-4。基于定量和定性分析,细菌分离株的降解低密度聚乙烯膜的能力按以下顺序显示:paramycarycoides ibp-3> bacillus cereus ibp-4> lysinibacillus sp。ibp-1>芽孢杆菌。IBP-2。 结论:所有四个海洋细菌分离株都可以将低密度聚乙烯用作唯一的碳源。 基于定量和定性分析,Paramycoides IBP-3具有降解低密度聚乙烯膜的最佳潜力。 本研究提供了有关潜在细菌分离株的信息,可以开发以控制低密度聚乙烯塑料废物。IBP-2。结论:所有四个海洋细菌分离株都可以将低密度聚乙烯用作唯一的碳源。基于定量和定性分析,Paramycoides IBP-3具有降解低密度聚乙烯膜的最佳潜力。本研究提供了有关潜在细菌分离株的信息,可以开发以控制低密度聚乙烯塑料废物。
氢(H 2)是微生物代谢中最常见和使用的电子供体之一。对于居住在地下环境中的微生物尤其如此,因为H 2浓度可能会高于H 2通过一种或多种非生物和生物生物过程,例如蛇纹凝集,放射分解,破坏和微生物发酵。对地质探索和开发地质(即白色和橙色)H 2作为一种干净的低碳燃料的兴趣激增,因此需要评估微生物对其频道的影响以及从地下系统中的潜在恢复。现在,高吞吐量宏基因组测序方法广泛应用于岩石托管生态系统中,现在可以轻松地识别微生物,这些微生物具有对H 2代谢的潜力,并可以使用单独的天然样本中的比较基因组数据来代谢H 2与H H 2氧化模式与可用的氧化剂进行了可用的氧化剂。结合了岩石托管生态系统中净微生物H 2消耗率的最新报道,此类信息提供了有关微生物影响H 2从地质系统中恢复的经济学的潜力的新观点。从这个角度来看,微生物用来可逆地氧化H 2来促进其能量代谢的不同类别的酶,并讨论了它们在几个岩石托管生态系统中的分布。最后,讨论了计划在地质H 2采矿环境中指导未来微生物研究的途径。还提出了岩石宿主生态系统中净微生物H 2氧化活性的汇编,以使估计在采矿活动中自然或刺激的地质储层中的潜在h 2损失,并从Samail Ophiolite提供的示例中指出,> 90%的地质H 2产生的> 90%的地质H 2可能会丢失到微生物消费中。
M.F. adame(f.adame@griffith.edu.au)和N. Iram隶属于澳大利亚昆士兰州布里斯班的格里菲斯大学的澳大利亚河流学院。 J. Kelleway隶属于澳大利亚新南威尔士州卧龙岗的沃隆港大学,地球,大气和生命科学学院。 K.W. Krauss隶属于美国路易斯安那州拉斐特的美国地质调查局,湿地和水生研究中心。 C.E. Lovelock和P. Dargusch隶属于澳大利亚昆士兰州圣卢西亚大学昆士兰州的环境学校。 J.B. Adams隶属于南非Gqeberha的纳尔逊·曼德拉大学,沿海与海洋研究所和植物学系的纳尔逊·曼德拉大学。 S.M. Trevathan-Tackett和P. Carnell隶属于Deakin Marine Research and Innovation Center,位于澳大利亚维多利亚州梅尔博恩的Deakin University生活与环境科学学院。 G. Noe隶属于美国弗吉尼亚州雷斯顿市的美国地质调查局,佛罗伦萨Bascom地球科学中心。 L. Jeffrey隶属于位于澳大利亚新南威尔士州利斯莫尔的南十字大学科学与工程学院。 M. Ronan和M. Zann隶属于澳大利亚昆士兰州布里斯班的昆士兰州政府湿地团队环境,科学和创新部。 N. IRAM隶属于新加坡国立大学科学学院的基于自然的气候解决方案中心。 D.T. da。M.F.adame(f.adame@griffith.edu.au)和N. Iram隶属于澳大利亚昆士兰州布里斯班的格里菲斯大学的澳大利亚河流学院。J. Kelleway隶属于澳大利亚新南威尔士州卧龙岗的沃隆港大学,地球,大气和生命科学学院。K.W. Krauss隶属于美国路易斯安那州拉斐特的美国地质调查局,湿地和水生研究中心。 C.E. Lovelock和P. Dargusch隶属于澳大利亚昆士兰州圣卢西亚大学昆士兰州的环境学校。 J.B. Adams隶属于南非Gqeberha的纳尔逊·曼德拉大学,沿海与海洋研究所和植物学系的纳尔逊·曼德拉大学。 S.M. Trevathan-Tackett和P. Carnell隶属于Deakin Marine Research and Innovation Center,位于澳大利亚维多利亚州梅尔博恩的Deakin University生活与环境科学学院。 G. Noe隶属于美国弗吉尼亚州雷斯顿市的美国地质调查局,佛罗伦萨Bascom地球科学中心。 L. Jeffrey隶属于位于澳大利亚新南威尔士州利斯莫尔的南十字大学科学与工程学院。 M. Ronan和M. Zann隶属于澳大利亚昆士兰州布里斯班的昆士兰州政府湿地团队环境,科学和创新部。 N. IRAM隶属于新加坡国立大学科学学院的基于自然的气候解决方案中心。 D.T. da。K.W.Krauss隶属于美国路易斯安那州拉斐特的美国地质调查局,湿地和水生研究中心。C.E.Lovelock和P. Dargusch隶属于澳大利亚昆士兰州圣卢西亚大学昆士兰州的环境学校。J.B. Adams隶属于南非Gqeberha的纳尔逊·曼德拉大学,沿海与海洋研究所和植物学系的纳尔逊·曼德拉大学。 S.M. Trevathan-Tackett和P. Carnell隶属于Deakin Marine Research and Innovation Center,位于澳大利亚维多利亚州梅尔博恩的Deakin University生活与环境科学学院。 G. Noe隶属于美国弗吉尼亚州雷斯顿市的美国地质调查局,佛罗伦萨Bascom地球科学中心。 L. Jeffrey隶属于位于澳大利亚新南威尔士州利斯莫尔的南十字大学科学与工程学院。 M. Ronan和M. Zann隶属于澳大利亚昆士兰州布里斯班的昆士兰州政府湿地团队环境,科学和创新部。 N. IRAM隶属于新加坡国立大学科学学院的基于自然的气候解决方案中心。 D.T. da。J.B. Adams隶属于南非Gqeberha的纳尔逊·曼德拉大学,沿海与海洋研究所和植物学系的纳尔逊·曼德拉大学。S.M. Trevathan-Tackett和P. Carnell隶属于Deakin Marine Research and Innovation Center,位于澳大利亚维多利亚州梅尔博恩的Deakin University生活与环境科学学院。 G. Noe隶属于美国弗吉尼亚州雷斯顿市的美国地质调查局,佛罗伦萨Bascom地球科学中心。 L. Jeffrey隶属于位于澳大利亚新南威尔士州利斯莫尔的南十字大学科学与工程学院。 M. Ronan和M. Zann隶属于澳大利亚昆士兰州布里斯班的昆士兰州政府湿地团队环境,科学和创新部。 N. IRAM隶属于新加坡国立大学科学学院的基于自然的气候解决方案中心。 D.T. da。S.M.Trevathan-Tackett和P. Carnell隶属于Deakin Marine Research and Innovation Center,位于澳大利亚维多利亚州梅尔博恩的Deakin University生活与环境科学学院。G. Noe隶属于美国弗吉尼亚州雷斯顿市的美国地质调查局,佛罗伦萨Bascom地球科学中心。L. Jeffrey隶属于位于澳大利亚新南威尔士州利斯莫尔的南十字大学科学与工程学院。M. Ronan和M. Zann隶属于澳大利亚昆士兰州布里斯班的昆士兰州政府湿地团队环境,科学和创新部。N. IRAM隶属于新加坡国立大学科学学院的基于自然的气候解决方案中心。D.T.da。Maher隶属于位于澳大利亚新南威尔士州利斯莫尔的南十字大学科学与工程学院。D. Murdiyarso与印度尼西亚Bogor IPB大学的地球物理和气象学系有关,隶属于国际林业研究中心。S. S. Sasmito隶属于新加坡新加坡国立大学的NUS环境研究所。B. Tran隶属于越南河内的越南国立农业大学。J.B. Kauffman隶属于Ilahee Sciences International以及俄勒冈州立大学的渔业,野生动植物和保护科学系,位于俄勒冈州的Corvallis。Laura S. Brophy隶属于美国俄勒冈州立大学的俄勒冈州立大学的应用生态学研究所,地球,海洋和大气科学学院。
摘要。本文提出了一个描述森林生态系统动态的数学模型。该模型基于交叉扩散原理,考虑森林环境中两种植物之间的相互作用。该模型考虑了各种参数,如扩散、生长和相互作用系数以及物种之间的环境容量。还介绍了外部条件对每种植物的影响因素。使用有限差分法对微分方程进行数值求解。本文结合经典微分方程和量子启发优化技术研究交叉扩散动力学。重点是交叉扩散过程,其中种群通过复杂的扩散和反应机制相互作用。该研究采用一种混合方法,将求解微分方程的经典方法与量子计算平台量子优化相结合。结果的可视化以 3D 图形的形式呈现,反映了森林生态系统中植物种群在不同时间步骤的空间分布。由此产生的数学模型及其可视化为更深入地了解各种因素对森林生态系统动态的影响提供了一种工具。分析这种模型可能有助于预测森林的长期变化和制定可持续森林管理战略。
基于不同的定义,沙漠可能占全球陆地表面的13%至33%。这大于热带森林和所有类型的湿地的区域。然而,在其生态系统服务(ES)方面,沙漠生态系统是研究最少的生态系统之一,尤其是那些是由沙漠独有的物种和过程引起的。需要填补许多研究空白,包括:(1)对独特的沙漠ES以及沙漠对ES的特殊效果的无知; (2)有限地应用了精致方法对沙漠ES的生态提名估值; (3)缺乏多种价值和估值的方法。此外,生态系统服务(PES)方案的付款通常用于打击荒漠化,而不是保存运转良好的沙漠。沙漠ES的估值对于通过提高对沙漠的认识,激励投资,设计付款金额以及估算社会福利成本比率的付款比率来实施PE至关重要。除了基于市场的自愿性PES外,Ostrom的八个核心设计原则之后的普通资产信托(CAT)也可能有助于对沙漠生态系统的可持续管理。未来的研究应探索独特的沙漠,调查沙漠ES与地球系统服务之间的关系,提高沙漠经济估值的准确性,并整合各种价值观的观点。研究结果可能有助于抗击荒漠化和保护重要的沙漠。
摘要:越来越多地认识到由合成的农业化学物质(例如化肥,农药和除草剂)引起的问题,这使得发现可以保证可以保证竞争植物生产并保护环境的同时保持农业生态系统的自然平衡的替代方法至关重要。领先的替代方法之一是利用促进植物生长根瘤菌(PGPR)的根瘤菌菌株。基于PGPR的生物量化剂在农业生产的可持续性方面的利用在世界范围内引起了极大的关注,因为它们不仅有助于改善植物的生长,而且还诱发了生物性和非生物胁迫耐受性。本评论更新了可持续农业生态系统中上述环保战略,并为乳酸细菌(LAB)(一种新兴的PGPR分类群)提供了新的见解。在这方面,提出了实验室合成代谢物的能力,包括有机酸,酚酸及其类黄酮衍生物,phy-肌措施和抗菌底物。实验室的使用提供了PGPR和环保作物生产力之间的桥梁,这可以通过减少农业化学物质,提高土壤质量并最大程度地减少环境污染来导致可持续生产系统。实验室的所有有益方面都需要通过未来的研究来解决,以计划使用和/或将PGPR的使用以及其他有机或无机投入组合在可持续生产系统中的方法。
•近24,000公顷的Puna生态系统可持续管理。•直接从PUNA生态系统的可持续管理中直接受益60,500人。又有200万人间接受益。其中一半是女性。•支持的基于生态系统的适应(EBA)措施,即对Qochas,泥炭地和草原的修复和保护,在雨季或冰川融化以充电含水层时捕获和储存水。这增加了在干旱季节农业,牲畜和饮用水中的水的可用性。
此预印本版的版权持有人于2024年2月21日发布。 https://doi.org/10.1101/2024.02.19.579948 doi:Biorxiv Preprint