1。外包决策,确保遵守当地法律和法规,并保护公司的竞争优势。2。供应商资格,在进行业务关系和业务关系期间,验证ESG/H&S的合规性和绩效。3。在Holcim场所中的访问控制,在记录或数据支持的情况下,记录允许进入或退出的“谁,何时和何时”。4。对相关的内部人员和外部业务合作伙伴的培训和沟通,负责确保遵守Holcim政策和标准。5。合规性验证:“正在进行的”(在承包商入职,工作执行和工作后评估期间)和“现场”(HSE审计,人权评估和临时调查)。6。绩效和后果管理过程以解决合规性违规。
我们保卫世界上最伟大的国家——一个建立在为所有人提供机会的承诺之上的民主国家。这个国家的人口结构与我们生活的环境相似——不断变化——国防部必须做出改变,以维持和维持其未来的力量。只要我们真正代表了我们的民主,我们就是一支更强大、更有意义的力量。国防部将多样性视为一项战略要务。不同的背景和经历带来了本质上不同的观点和思维方式,这是组织创新的关键。我们通过利用所有成员的多样性并创造一个包容性的环境来获得战略优势,在这个环境中,每个成员都受到重视并被鼓励提供对创新、优化和组织任务成功至关重要的想法。
结果:发现NAFLD与糖尿病神经病和肾病的发生率有关(优势比:1.338(95%的置置间隔:1.091-1.640)和1.333(分别为1.007-1.764))。碱性磷酸酶酶与糖尿病神经病和肾病的较高风险有关((风险估计:1.002(95%CI:1.001-1.003)和1.002(分别为1.001-1.004)))。此外,γ-谷氨酰胺转移酶与糖尿病性肾病的风险更高(1.006(1.002-1.009)。天冬氨酸氨基转移酶和丙氨酸氨基转移酶与糖尿病性视网膜病的风险成反比(0.989(0.979-0.998)和0.990(0.983-0.996))。此外,ARPI_T(1),ARPI_T(2)和ARPI_T(3)被证明与NAFLD相关(1.440(1.061-1.954),1.589(1.163-2.171)和2.673
•Barodiya,V。K.(2022)。使用机器学习对疾病诊断的研究。本文在医学诊断任务中评估了各种ML模型的性能,包括SVM和深度学习。该研究还探讨了数据预处理技术以提高模型的准确性。与项目的相关性:研究结果与该项目的重点放在利用SVM和强大的预处理技术上,以检测具有高精度的复杂疾病。•Luo,X.,Wang,Y。,&Lee,L。(2021)。基于机器学习的诊断系统的开发和五项评估。本文提供了一个全面的框架,用于使用精度,回忆和F1得分等指标评估机器学习模型。与该项目的相关性:研究中讨论的评估指标直接适用于评估提出的系统的性能,从而确保诊断预测的准确性和可靠性。
量子计算机的探索正在如火如荼地展开。在过去十年中,量子计算的前沿领域已经从探索少量子比特设备扩展到开发可行的多量子比特处理器。超导 transmon 量子比特是当今时代的主角之一。通过和谐地结合应用工程与计算机科学和物理学的基础研究,基于 transmon 的量子处理器已经成熟到令人瞩目的水平。它们的应用包括研究物质的拓扑和非平衡状态,有人认为它们已经将我们带入了量子优势时代。然而,建造一台能够解决实际相关问题的量子计算机仍然是一个巨大的挑战。随着该领域以无拘无束的热情发展,我们是否全面了解潜伏的潜在危险的问题变得越来越紧迫。特别是,需要彻底弄清楚,在拥有 O (50) 量子比特的可行量子计算机的情况下,是否会出现与多量子比特性质相关的新的和迄今为止未考虑的障碍。例如,小型设备中量子门的高精度很难在大型处理器中获得。在硬件方面,大型量子计算机提出的独特要求已经催生了量子比特设计、控制和读出的新方法。本论文介绍了一种新颖的、不太实用的多量子比特处理器视角。具体来说,我们通过将局域化和量子混沌理论中的概念应用于多 transmon 阵列,将量子工程和多体物理学领域融合在一起。从多体的角度来看,transmon 架构是相互作用和无序非线性量子振荡器的合成系统。虽然 transmon 之间的一定程度的耦合对于执行基本门操作是必不可少的,但需要与无序(量子比特频率的站点间变化)进行微妙的平衡,以防止局部注入的信息在扩展的多体状态中分散。 Transmon 研究已经建立了不同的模式来应对效率低下(由于耦合小或无序大而导致的门速度慢)和信息丢失(耦合大或无序太小)之间的困境。我们使用当代量子处理器作为蓝图,在精确对角化研究中分析了 transmon 量子计算机的小型实例。仔细研究光谱、多体波函数和量子比特-量子比特相关性以获得实验相关的参数范围,发现一些流行的 transmon 设计方案在接近不可控混沌波动的区域运行。此外,我们在经典极限中建立了混沌的出现与量子混沌特征的出现之间的密切联系。我们的概念补充了传统的少量子比特图像,该图像通常用于优化小规模的设备配置。从我们全新的视角,可以探测到超出这个局部尺度的不稳定机制。这表明,在多体定位领域开发的技术应该成为未来 transmon 处理器工程的一个组成部分。
在哈马德·本·哈利法大学组织的一场小组讨论中,有人提出了一个问题:人工智能是否真的可以创造艺术?此次活动由哈马德·本·哈利法大学科学与工程学院和人文与社会科学学院翻译与口译学院组织。活动由两场小组讨论组成,邀请了来自卡塔尔消防局驻地艺术家和 Mada 中心的主讲嘉宾。第二场小组讨论特别探讨了人工智能如何改变残疾人士的艺术体验和参与。小组通过案例研究展示了残疾人士如何利用人工智能来塑造他们对当代艺术形式的体验和概念。从而确定了人工智能可能对艺术感知和包容性带来的挑战和机遇。
AI系统经过经常被模型记忆的数据培训(Carlini等,2021)。机器学习模型的行为就像训练数据的有损压缩机一样,这些模型基于深度学习的性能进一步归因于这种行为(Schelter,2020; Tishby&Zaslavsky,2015年)。换句话说,机器学习模型是培训数据的压缩版本。此外,AI模型还容易受到会员推理攻击的影响,这些攻击有助于评估有关某人的数据是否在培训数据集中(Shokri等,2017)。因此,实施擦除和纠正的权利需要通过模型逆转个人数据的记忆。这涉及删除(1)用作培训输入的个人数据,以及(2)训练有素的模型中特定数据点的影响。
需要在多年生果实和坚果作物中控制害虫的新型策略,因为由于对少数活性成分和调节性问题的过度依赖,目标害虫通常表现出对化学控制的敏感性降低。作为化学控制的替代方法,可以将昆虫病作用真菌用作生物控制剂来管理害虫群体。但是,缺乏基本知识会阻碍现有产品的开发。现成的产品的开发需要收集,筛查和表征更多潜在的昆虫病变真菌和菌株。创建一个标准化的研究框架来研究昆虫病变真菌,将有助于确定真菌可能具有的生物控制活性的潜在机制,包括抗生素代谢物的产生;最适合在不同气候和农业生态系统中生存的菌株和物种;并优化了昆虫病作用真菌和新型制剂的组合。因此,这项迷你综述讨论了收集和表征新的昆虫病毒菌株,测试生物防治活性的不同潜在机制,检查不同物种和菌株耐受不同气候的能力的策略,最后如何利用这些信息将这些信息开发为种植者的产品。