对神经反馈培训研究和相关临床应用的一个重大挑战是参与者在训练过程中学习诱导特定大脑模式的困难。在这里,我们在基于fMRI的解码神经反馈(DECNEF)的背景下解决了这个问题。可以说,用于构建解码器的数据与用于神经反馈训练的数据之间的差异,例如数据分布和实验环境的差异,可能是上述参与者困难的原因。我们使用标准机器学习算法开发了一个共同适应程序。首先,我们使用以前的Decnef数据集通过模拟测试了该过程。该过程涉及一种自适应解码器算法,该算法根据其在神经反馈试验中的预测中实时更新。结果表明,在神经反馈训练期间,解码器性能有了显着改善,从而增强了学习曲线。然后,我们在Decnef培训程序中收集了实时fMRI数据,以提供概念证据证据,表明共同适应增强了参与者在训练过程中诱导目标状态的能力。因此,通过共同适应的个性化解码器可以提高Decnef培训方案的精度和可靠性,以针对特定的大脑表示,并在转化研究中产生后果。这些工具可公开提供给科学界。
“可以进一步了解市议会如何改善其内部运作以应对气候变化。例如,有提及理事会的旅行计划,但是是否制定了行动计划来交付它?是否有公司停车管理计划?现有的活动旅行设施是什么(自行车停车,淋浴等)可以改进吗?正在采取什么措施鼓励员工采取可持续的模式,或者将进行调查以监视?是否有活跃的学校街道或可持续的旅行参与计划?,他们是否正在与GCC ThinkTravel互动,以实施如何实施?”
随着人工智能的快速发展,该技术已从工业和实验室环境中转移到了日常人的手中。一旦AI和机器人代理人被安置在日常家庭中,就需要考虑到人类的需求。使用诸如从人类反馈(RLHF)中学习的方法,代理可以通过学习奖励功能或直接基于其回馈来优化策略来学习理想的行为。与互联网规模数据受益的视觉模型和大型语言模型(LLM)不同,RLHF受到提供的反馈量的限制,因为它需要额外的人为努力。在本文中,我们研究了如何减少人类提供的反馈数量,以减轻奖励功能而不会降低估计值时减轻负担。我们从基于偏好的学习角度来解决反馈的信息和效率之间的基本权衡。在这方面,我们介绍了可以分为两组的多种方法,即在没有额外的人类努力的情况下提高反馈质量的隐式方法,以及旨在通过使用其他反馈类型来大幅增加信息内容的明确方法。为了暗中提高偏好反馈的效率,我们研究如何利用主动学习(AL)来通过从差异自动编码器(VAE)中从差异化表示中挑选出差异的群集来提高样品的多样性。此外,我们还利用了优先对对通过在VAE的潜在空间上插值执行数据综合之间的独特关系。虽然隐式方法具有不需要额外努力的好处,但它们仍然遭受单独提供的信息提供的有限信息。对轨迹的偏好的一个局限性是没有折扣,这意味着如果首选轨迹,则为整个轨迹是首选,导致休闲混乱。因此,我们引入了一种称为“亮点”的新形式的反馈形式,该反馈使用户可以在轨迹上显示,哪一部分是好的,哪一部分不好。此外,利用LLMS创建了一种让人通过自然语言解释其偏好的方法,以推断出哪些部分是首选的。总的来说,本论文远离了互联网规模数据的假设,并展示了我们如何从人类较少的反馈中实现一致性。
随着人工智能的快速发展,这项技术已经走出工业和实验室,进入了人们的日常生活。一旦人工智能和机器人代理进入日常家庭,它们就需要能够考虑人类的需求。借助诸如强化学习人类反馈 (RLHF) 之类的方法,代理可以通过学习奖励函数或直接基于其反馈优化策略来学习理想的行为。与受益于互联网规模数据的视觉模型和大型语言模型 (LLM) 不同,RLHF 受限于所提供的反馈量,因为它需要额外的人力投入。在本论文中,我们研究如何减少人类提供的反馈量,以减轻他们在估计奖励函数时的负担,同时又不降低估计值。我们从基于偏好的学习角度研究了反馈的信息量和效率之间的根本权衡。为此,我们介绍了多种方法,这些方法可以分为两类:隐式方法,无需额外的人力投入即可提高反馈质量;显式方法,旨在通过使用更多反馈类型来大幅增加信息量。为了隐式地提高偏好反馈的效率,我们研究如何利用主动学习 (AL),通过变分自编码器 (VAE) 从已学习表征的不同聚类中策略性地选取样本,从而提高样本的多样性。此外,我们利用偏好对之间的独特关系,通过在 VAE 的潜在空间上进行插值来执行数据合成。虽然隐式方法具有无需额外工作量的优势,但它们仍然存在偏好本身所能提供的信息量有限的问题。轨迹偏好的一个局限性是没有折扣,这意味着如果一条轨迹是偏好的,则假设整个轨迹都是偏好的,从而导致偶然的混淆。因此,我们引入了一种称为亮点的新反馈形式,让用户在轨迹上显示哪些部分是好的,哪些部分是坏的。此外,利用 LLM,我们创建了一种方法,让人类通过自然语言解释他们的偏好,以推断哪些部分是偏好的。总体而言,本论文摆脱了互联网规模数据的假设,并展示了如何通过较少的人工反馈实现一致性。
运动技能学习使生物可以与环境有效相互作用,并依靠将感觉反馈与电机输出相结合的神经机制。虽然感觉反馈(例如与运动动作相关的听觉提示)增强了人类运动性能,但其作用机理的理解很少。开发可靠的增强运动技能学习动物模型对于开始剖析这种增强的生物系统至关重要。我们假设在运动任务期间连续的听觉反馈将促进小鼠的复杂运动技能。我们使用DeepLabcut开发了一个闭环系统,以实时无标记跟踪鼠标前爪动作,并具有高处理速度和低延迟。通过将前言的动作编码到不同频率的听觉音调中,小鼠在到达任务期间接收了连续的听觉反馈,需要将左前爪垂直位移到目标。成年小鼠在4 d培训中接受了听觉反馈或没有反馈的培训。与对照组相比,接收听觉反馈的小鼠表现出明显增强的运动技能学习。对轨迹的聚类分析表明,在运动训练的第2天之前,听觉反馈小鼠建立了一致的到达轨迹。这些发现表明,实时,运动编码的听觉反馈有效地促进了小鼠运动技能。这种闭环系统利用高级机器学习和实时跟踪,为探索运动控制机制和通过增强的感觉反馈开发运动障碍的治疗策略提供了新的途径。
摘要:组织培养物,尤其是脑器官的分析,进行了高度的协调,测量和监测。我们已经开发了一个自动化的研究平台,使独立设备能够实现以反馈驱动的细胞培养研究实现协作目标。由物联网(IoT)体系结构统一,我们的方法可以在各种感应和驱动设备之间进行连续的,交流的互动,从而实现了对体外生物学实验的准时控制。该框架整合了微流体,电生理学和成像装置,以维持脑皮质器官并监测其神经元活性。类器官是用定制的3D打印室进行培养的,该腔室附着在商业微电极阵列上,用于电生理监测。使用可编程的微流体泵实现周期性喂养。我们开发了抽吸培养基的计算机视觉量估计,达到了高精度,并使用了反馈,以纠正媒体喂养/抽吸周期中微流体灌注的偏差。我们通过比较手动和自动化方案的7天研究对系统进行了为期7天的研究。自动化的实验样品在整个实验过程中保持了强大的神经活性,与对照样品相当。自动化系统启用了每小时的电生理记录,该记录揭示了在每天一次的录音中未观察到神经元发射率的巨大时间变化。
最近已经显示,急性应力影响大型大脑网络之间的神经资源分配,尤其是执行控制网络和显着网络之间的平衡。对这种动态资源重新分配过程的适应性被认为在与压力相关的PSY-CHOPALOGY中起主要作用,这表明应力弹性可以通过在这两个网络之间自适应地重新分配神经资源的保留能力来确定。积极训练这种能力可能是增加患有与压力相关的症状学风险的个体的弹性的潜在有前途的方法。使用实时功能磁共振成像,当前的研究研究了个人是否可以学会自我调节与压力相关的大规模网络平衡。参与者参与了双向和隐式实时fMRI神经反馈范式,其中间歇性地向他们提供了视觉表示显着性和执行控制网络平均激活和执行控制网络之间的差异信号,并试图自我调节该信号。Our results show that, given feedback about their performance over three training sessions, participants were able to (1) learn strategies to differentially control the balance between SN and ECN activation on demand, as well as (2) successfully transfer this newly learned skill to a situation where they (a) did not receive any feedback anymore, and (b) were exposed to an acute stressor in form of the prospect of a mild electric stimulation.当前的研究构成了基于与压力相关的大规模网络平衡的神经反馈培训的第一大成功证明 - 一种新颖的方法,一种新的方法有可能培训对现实生活中压力源的中心反应的控制,并可能为未来的临床干预措施奠定基础,以促进越来越多的弹性。
这项工作在头部(VIH)框架中提出了一种新颖的声音,该框架集成了大型语言模型(LLM)和语义理解的力量,以增强复杂环境中的机器人导航和互动。我们的系统从战略上结合了GPT和Gemini Power LLM作为加强学习(RL)循环中的演员和评论家组成部分,以进行连续学习和适应。vih采用了由Azure AI搜索提供动力的复杂语义搜索机制,使用户可以通过自然语言查询与系统进行交互。为了确保安全并解决潜在的LLM限制,该系统将增强学习与人类反馈(RLHF)组件结合在一起,仅在必要时才触发。这种混合方法可带来令人印象深刻的结果,达到超过94.54%的成功率,超过了既定的基准。最重要的是,VIH框架提供了模块化可扩展的体系结构。通过简单地修改环境,该系统展示了适应各种应用域的潜力。这项研究为认知机器人技术领域提供了重大进步,为能够在现实世界情景下能够复杂的推理和决策制定的智能自治系统铺平了道路,这使我们更接近实现人工通用情报。
组合脑电图和fMRI允许整合精细的空间和准确的时间分辨率,但如果实时执行以实现神经反馈(NF)循环,则会引起许多挑战。在这里,我们描述了在运动成像NF任务中同时获得的脑电图和fMRI的多模式数据集,并补充了MRI结构数据。这项研究涉及30名健康志愿者接受五次培训。我们在以前的工作中展示了同时EEG-FMRI NF的潜力和优点。在这里,我们说明了可以从该数据集中提取的信息的类型并显示其潜在用途。这代表了NF的EEG和fMRI的第一个同时记录之一,在这里我们提出了第一个开放访问BI-MODAL模式NF数据集,该数据集整合了EEG和FMRI。我们认为,这将是(1)多模式数据集成的进步和测试方法,(2)提高所提供的NF质量,(3)改善在MRI下获得的EEG的方法论,并(4)使用多模式信息研究了运动象征的神经标志物。
