摘要 - 嵌入式机器学习的新领域使微控制器能够运行复杂的机器学习模型。用于机器学习应用程序的嵌入式设备可以完成行业中的许多任务。尽管对嵌入式系统和机器学习有很多教育内容,但嵌入式ML的教育内容尚未赶上。作者开发了在Udemy上嵌入机器学习的介绍,以尝试通过提供嵌入式系统,机器学习和微小ML的基础来填补该空白。本课程将使用微控制器或学生的移动设备进行交互式声学事件检测项目结束。在课程结束时,学生将能够选择自己的分类和音频,以及训练和部署机器学习模型。这是引入初学者并在嵌入式机器学习领域获得宝贵经验的好方法。
单元 1 嵌入式系统和物联网简介 9 小时。嵌入式系统简介、应用领域、嵌入式系统类别、嵌入式系统架构概述、嵌入式系统的特点、嵌入式系统的最新趋势、ARM 处理器及其架构简介。物联网承诺 – 定义 – 范围 – 传感器、物联网应用 – 物联网结构 – 物联网地图设备;物联网传感器 – 特性 – 类型。物联网问题和挑战、应用。单元 2 嵌入式物联网平台设计方法 9 小时。目的和要求规范、流程规范、领域模型规范、信息模型规范、服务规范、物联网级别规范、功能视图规范、操作视图规范、设备和组件集成、应用程序开发。单元 3 嵌入式物联网和物理设备的支柱 9 小时。设备互联网、物体互联网、传感器互联网、o 控制器互联网、连接和管理设备、对话、连接。网络、物联网设备的基本构建块、示例设备:Raspberry Pi、Raspberry Pi 接口、使用 Python 编程 Raspberry Pi、▪ Beagle 板和其他物联网设备。单元 4 物联网和物联网云
国家理工学院锡金,国家重要的研究所是印度政府在2009年被印度政府的十个新批准的NIT之一。该研究所提供B.计算机科学和工程,电子和通信工程,电气和电子工程,机械工程以及土木工程的技术课程。此外,该研究所在VLSI和嵌入式系统,通信和信号处理,电气和电子工程以及AI和ML中提供M.Tech计划。该研究所还提供M SC。化学和博士学位的计划D计划在所有部门中。目前,NIT Sikkim位于South Sikkim的Ravangla的一个临时校园中,该校园是一个旅游城镇,它通过高速公路与该州其他主要城镇相连,位于Pelling和Gangtok之间。Ravangla位于2100 m的海拔,周围是喜马拉雅地形,以佛陀公园,Temi Tea Garden和Ralong修道院等旅游胜地而闻名。
Maisammaguda,Dhulapally,Kompally,塞康德拉巴德 - 500100,特伦甘纳邦,印度。联系电话:7207034237、9133555162,电子邮件 ID:mrcet2004@gmail.com,网站:www.mrcet.ac.in
最新的表示学习研究表明,层次数据将自己带入双曲线空间中的低维和高度信息的表示。但是,即使双曲线嵌入在图像识别方面也收集了,它们的优化也容易出现数值障碍。此外,与传统的Eu-Clidean特征相比,尚不清楚哪种应用将受益于双曲线的隐性偏见最大。在本文中,我们专注于原型双曲神经网络。尤其是,双曲线嵌入的趋势会在高维度收敛到庞加尔e球的边界,并且对这对几乎没有的分类具有影响。我们表明,在常见的双曲半径上获得双曲线嵌入的最佳射击效果。与先前的基准结果相反,我们证明了配备有欧几里德指标的固定radius编码器可以实现更好的性能,而与嵌入式维度无关。
• 用户可以从公共门户网站下载并打印任何出版物的一份副本,用于私人学习或研究。 • 您不得进一步分发该材料或将其用于任何营利活动或商业收益 • 您可以自由分发公共门户网站上标识该出版物的 URL ?
在KHI于2024年5月14日举办的一次召集期间收集了有关指南的反馈,标题为“研究中的居中公平:制定实践策略和确定考虑因素”,以及通过事后调查。召集包括来自堪萨斯州各地的约50名利益相关者,他们审查了这些策略并提供了有价值的反馈,后来又将其纳入了指南。该活动的特色是演讲者EusebioDíaz,M.A。,卫生前进基金会策略,学习与沟通副总裁,来自亚利桑那州立大学的香农·波特略(Shannon Portillo)博士,以及密苏里州肯尼亚大学的M.S.C.R. Bridgette L. Jones,M.S.C.R.。演讲者讨论了研究中的当前公平状态,应对挑战并探索未来的机会。
摘要 —近年来,深度学习 (DL) 对基于脑电图 (EEG) 的运动想象脑机接口 (MI-BMI) 的改进做出了重大贡献。在实现高分类准确率的同时,DL 模型的规模也不断扩大,需要大量的内存和计算资源。这对嵌入式 BMI 解决方案提出了重大挑战,该解决方案应通过本地处理数据来保证用户隐私、减少延迟和低功耗。在本文中,我们提出了 EEG-TCN ET,一种新颖的时间卷积网络 (TCN),它在只需要少量可训练参数的情况下实现了出色的准确率。其低内存占用和低推理计算复杂度使其适合在资源有限的边缘设备上进行嵌入式分类。在 BCI 竞赛 IV- 2a 数据集上的实验结果表明,EEG-TCN ET 在 4 类 MI 中实现了 77.35% 的分类准确率。通过为每个受试者找到最佳网络超参数,我们进一步将准确率提高到 83.84%。最后,我们在 Mother of All BCI Benchmarks (MOABB) 上展示了 EEG-TCN ET 的多功能性,这是一个包含 12 个不同 EEG 数据集和 MI 实验的大规模测试基准。结果表明,EEG-TCN ET 成功地推广到单个数据集之外,在 MOABB 上的表现比目前最先进的 (SoA) 好 0.25 倍。索引术语 — 脑机接口、运动意象、深度学习、卷积神经网络、边缘计算。
分散的可再生能源系统(DRES)将可再生能源与能源有效的建筑技术整合在一起,并代表了可持续建筑环境的重要工具。鉴于其技术复杂性,DRE还包括全面的监测系统,可提供重要的机会来优化能源流量并提高能量效率。由于这些原因,研究开发了一系列自动化优化模型和算法,例如关联规则挖掘或故障检测诊断。迄今为止,在这些高级和自动化技术的哪些条件下仍不清楚,最好将其集成以优化DRE。本文提出了一个互补的行业观点,借鉴了瑞士最先进的DRE之一的优化活动的深入案例研究。在五年中,某些优化措施有助于将能源消耗降低55-60%。然而,其他措施的优化能力尚不清楚。案例研究表明,尽管技术方面引起了优化的潜力,但组织方面已经阻止了科学算法的应用,或者至少延迟了科学算法的应用,因此阻碍了这种优化潜力的实现。这些发现呼吁研究人员更好地将技术和运营方面更好地整合到能源系统的优化中,并为决策者,投资者和能源计划者提供重要建议。2021 Elsevier B.V.保留所有权利。
p0,p1,p2和p3分别是端口0、1、2和3的SFR闩锁。将一个端口SFR(P0,P1,P2或P3)写成一点点,这会导致相应的端口输出引脚开关高。编写零会导致端口输出引脚开关低。用作输入时,端口引脚的外部状态将保存在端口SFR中(即,如果引脚的外部状态较低,则相应的端口SFR位将包含0;如果它很高,则位将包含1个)。
