我们提出了一种基于辩论动态的知识图谱自动推理新方法。其主要思想是将三重分类任务构建为两个强化学习代理之间的辩论游戏,它们提取论据(知识图谱中的路径),目标是分别促使事实为真(论点)或事实为假(反论点)。基于这些论据,一个称为评判者的二元分类器决定事实是真是假。这两个代理可被视为稀疏的对抗性特征生成器,为论点或反论点提供可解释的证据。与其他黑箱方法相比,这些论据让用户能够了解评判者的决定。由于这项工作的重点是创建一种可解释的方法以保持具有竞争力的预测准确率,因此我们在三重分类和链接预测任务上对我们的方法进行了基准测试。因此,我们发现我们的方法在基准数据集 FB15k-237、WN18RR 和 Hetionet 上的表现优于几个基线。我们还进行了一项调查,发现提取的参数对用户很有帮助。
Higuchi Satoshi (Orcid ID: 0000-0002-7914-8256) Guideline-directed medical treatment in patients undergoing transcatheter edge-to-edge repair for secondary mitral regurgitation Satoshi Higuchi, MD, PhD, 1 Mathias Orban, MD, 1,2 Marianna Adamo, MD 3 , Cristina Giannini, MD 4 , Bruno Melica,医学博士5,妮可·卡拉姆(Melica),医学博士Nicole Karam,医学博士6,医学博士7 Daniel Kalbacher,医学博士,8,9 Benedikt Koell,MD,8 Lukas,Stolz,Stolz,Stolz,MD 1,Daniel Braun,MD,MD,MHBA 1,2 1,2迈克尔·诺斯(Michael Neuss) Ferreira,医学博士5,医学博士Holger Thiele,医学博士13号,马里兰州Stephan Baldus 13号,Ralph Stephan von Bardeleben,MD,MD 11,MD,1,2 STEFFEN MASSBERG,1,2 Stephan Windecker,医学博士,医学博士,MD,7 Philipp Lurz,7 Philipp Lurz,MD,Phd,Phd,Phd,Phd,13 Anna Sonia petronio,raham,Mden fornam lindef byann linden linden ,, 15,Marco Metra,MD 3,JörgHausleiter,MD 1,2,*; EUROSMR调查人员
结果:超过四分之三的参与者,479个人(80%)已婚,243(40.1%)具有文凭或高等教育水平。456(75.12)的参与者报告了他们有关宫颈癌的信息。 对于449(73.9%)的参与者来说,电视是主要证据。 352(59.99%)的大多数参与者知道可以将HPV疫苗提供给9-14岁的女儿。 只有215(35.4%)参与者认为HPV疫苗是安全有效的。 具有学位且高于教育水平的女性对HPV疫苗的了解的可能性比未读写和写作的研究参与者高9倍(AOR = 9.21; 95%CI = 2.82-12.16; P = 0.004)。 在这项研究之前没有有关HPV疫苗的信息的女性,对HPV的正面看法的可能性降低了约80%456(75.12)的参与者报告了他们有关宫颈癌的信息。对于449(73.9%)的参与者来说,电视是主要证据。352(59.99%)的大多数参与者知道可以将HPV疫苗提供给9-14岁的女儿。只有215(35.4%)参与者认为HPV疫苗是安全有效的。 具有学位且高于教育水平的女性对HPV疫苗的了解的可能性比未读写和写作的研究参与者高9倍(AOR = 9.21; 95%CI = 2.82-12.16; P = 0.004)。 在这项研究之前没有有关HPV疫苗的信息的女性,对HPV的正面看法的可能性降低了约80%只有215(35.4%)参与者认为HPV疫苗是安全有效的。具有学位且高于教育水平的女性对HPV疫苗的了解的可能性比未读写和写作的研究参与者高9倍(AOR = 9.21; 95%CI = 2.82-12.16; P = 0.004)。在这项研究之前没有有关HPV疫苗的信息的女性,对HPV的正面看法的可能性降低了约80%
人类的生命中有铰接的物体。对清晰的物体的综合理解,即外观,结构,物理特性和语义,将使许多研究社区受益。作为当前的符号对象理解解决方案通常是基于具有无物理属性的CAD模型的合成对象数据集,从而阻止了在视觉和机器人任务中的实现对现实世界应用的满足概括。为了弥合差距,我们提出了AKB-48:一个大规模的对象k nowledge b ase,由48个猫咪的2,037个现实世界3D 3D铰接式对象模型组成。每个对象由知识图Artikg描述。为了构建AKB-48,我们提出了快速的发音知识建模(FARM)管道,可以在10-15分钟内满足铰接对象的Artikg,并在很大程度上降低了Real
摘要我们提出了一种大型语言模型(LLM)的ChatScene-利用LLM的能力来为自动驾驶汽车的安全至关重要方案。给定的非结构化语言指令,代理首先使用LLMS生成文本描述的流量方案。这些SCE-NARIO描述随后被分解为几个子描述,以获取指定的细节,例如行为和车辆的位置。代理然后将文本描述的子筛选性转换为特定于域的语言,然后在模拟器中生成用于预测和控制的实际代码,从而促进了Carla Simulation Envimonment中的不同和复杂场景的创建。我们代理的关键部分是一个全面的知识检索组件,它通过训练包含情景描述和代码对的知识数据库来有效地将特定的文本描述转化为相应的特定领域代码段。广泛的实验结果强调了Chatscene在提高自动驾驶汽车安全性方面的功效。对于Intance,ChatScene产生的方案显示,与最先进的基线相比,在针对不同的基于强化的基于学习的自我车辆进行测试时,碰撞率增加了15%。此外,我们表明,通过使用我们生成的安全 - 关键方案来微调不同的基于RL的自主驾驶模型,它们可以降低碰撞率9%,超过Cur-Current Sota方法。代码可在https://github.com/javyduck/chatscene上找到。ChatScene有效地弥合了交通情况的文本描述与实际CARLA模拟之间的差距,从而提供了一种统一的方式,以方便地生成安全至关重要的方案,以进行安全测试和改进AVS。
本文介绍了在人机协作背景下代表,推理和交互式学习领域知识的综合体系结构。答案集Prolog是一种非单调逻辑推理范式,用于用不完整的comsense域知识来表示和理由,为任何给定目标计算计划并诊断出意外的观察。基于ASP的推理还用于指导以前未知的动作的互动学习以及编码负担能力,动作前提和效果的公理。此学习将主动探索,反应性动作执行和人类(口头)描述的输入观察以及学习的动作和公理用于后续推理。在模拟机器人上评估了架构,该机器人协助人类在室内域中。
长期以来,科学家一直对利用干细胞的能力很感兴趣。干细胞是一种未分化的、自我复制的细胞,能够在生物体内分化成分化细胞。多能干细胞,包括胚胎干细胞,能够分化成生物体内的任何细胞。科学家认为,更多地了解干细胞将使他们能够开发出各种疾病的治疗方法和潜在治疗方法。然而,许多人反对将胚胎用于科学目的。2001 年,美国总统乔治·W·布什签署了一项行政命令,限制联邦政府资助从人类胚胎中获得的干细胞研究;2009 年,美国总统巴拉克·奥巴马推翻了这项禁令。阅读时,记下关于干细胞研究的不同观点。