每一个伟大的范式转变都来自有人质疑自己时间的随机性。伽利略在天上看到了秩序,当时其他人看到天体混乱。爱因斯坦看到了时空的结构,当时其他人看到了分开的力。gödel看到逻辑本身的不完整,当他人认为自己已经建立了密封系统。现在,代码(动态紧急系统的手学)是下一个不可避免的转移的出现 - 避免这种概率不是基本的,而是不完整的共振检测遗迹。
为了实现这一目标,将使用地面无人机方法估算的生物量测量与实际生物量数据进行了比较。比较了利用测量数据的广泛使用的基于过程的碳模型,以实现缩放潜力的适用性。为了评估树篱对农业系统的影响,将建模的树篱投入和产出应用于爱尔兰的“平均”乳制品,牛肉和可耕种的农业系统。该分析强调了新的树篱的保留和种植在农场规模上具有重要的缓解潜力。最后,以综合记分卡的形式出现了一种决策支持工具,该工具纳入了碳固存和生物多样性指标,用于本地评估。
摘要 本论文研究了人工智能 (AI) 对瑞典劳动力市场的影响。人工智能对知识密集型劳动力的影响尤其令人感兴趣,因为这是一个受人工智能影响更大的群体。理论预测人工智能将使工作任务自动化,同时导致经济中引入新任务。利用职位空缺数据,该论文通过研究机构接触人工智能的两种不同影响阐明了这一主题。首先,研究对劳动力雇用的影响,将劳动力分为工作任务与人工智能相关的劳动力组和工作任务与人工智能无关的劳动力组。其次,测试对机构对非人工智能劳动力所需技能变化的影响。这两个问题都旨在确定劳动任务是否确实被人工智能自动化,以及是否引入了新的工作任务。结果表明,接触人工智能的企业增加了非人工智能劳动力的雇用。此外,研究发现,接触人工智能与所需技能数量的减少有关。知识密集型企业和职业与接触人工智能的关系似乎略弱。结果的解释是,一些人工智能自动化正在发生,尽管不足以引起劳动力市场的重大变化。
这是在Martin Luther King Jr.纪念图书馆(901 G St. NW)举行的公开会议。
在边缘直接处理高带宽业务,节省骨干网的带宽消耗。时延敏感型业务需要部署在网络边缘,靠近用户。部分行业应用数据保密性较高,需要限制在特定的边缘区域。需要降低网络数据泄露风险,保护用户数据安全和隐私。
摘要我们提出了一种大型语言模型(LLM)的ChatScene-利用LLM的能力来为自动驾驶汽车的安全至关重要方案。给定的非结构化语言指令,代理首先使用LLMS生成文本描述的流量方案。这些SCE-NARIO描述随后被分解为几个子描述,以获取指定的细节,例如行为和车辆的位置。代理然后将文本描述的子筛选性转换为特定于域的语言,然后在模拟器中生成用于预测和控制的实际代码,从而促进了Carla Simulation Envimonment中的不同和复杂场景的创建。我们代理的关键部分是一个全面的知识检索组件,它通过训练包含情景描述和代码对的知识数据库来有效地将特定的文本描述转化为相应的特定领域代码段。广泛的实验结果强调了Chatscene在提高自动驾驶汽车安全性方面的功效。对于Intance,ChatScene产生的方案显示,与最先进的基线相比,在针对不同的基于强化的基于学习的自我车辆进行测试时,碰撞率增加了15%。此外,我们表明,通过使用我们生成的安全 - 关键方案来微调不同的基于RL的自主驾驶模型,它们可以降低碰撞率9%,超过Cur-Current Sota方法。代码可在https://github.com/javyduck/chatscene上找到。ChatScene有效地弥合了交通情况的文本描述与实际CARLA模拟之间的差距,从而提供了一种统一的方式,以方便地生成安全至关重要的方案,以进行安全测试和改进AVS。
摘要 —由于竞争压力的增加,现代组织倾向于依靠知识及其利用来维持长期优势。这就要求准确理解知识管理 (KM) 流程,特别是整个组织系统中知识的创建、共享/传输、获取、存储/检索和应用方式。然而,自新千年开始以来,第四次工业革命(也称为工业 4.0)的到来深深影响和塑造了此类知识管理流程,这涉及机器的互联互通及其自主学习和共享数据的能力。因此,本文研究了工业 4.0 中知识管理的知识结构和趋势。对总共 90 篇相关文章进行了文献计量分析和系统的文献综述。结果揭示了六个关键词集群,随后通过系统的文献综述进行探索,以确定这一新兴领域的潜在流向和未来的研究途径,这些途径能够在工业 4.0 及其后果的管理知识方面取得有意义的进展。
摘要 知识密集型任务对机器学习 (ML) 技术提出了重大挑战。常用的方法,例如大型语言模型 (LLM),在应用于此类任务时往往会表现出局限性。尽管如此,人们已经做出了显著的努力来缓解这些挑战,重点是通过知识图谱 (KG) 来增强 LLM。虽然 KG 在表示知识方面具有许多优势,但它们的开发成本可能会阻碍广泛的研究和应用。为了解决这一限制,我们引入了一个框架,用于使用完善的通用 KG 来丰富小规模领域特定知识图谱的嵌入。采用我们的方法,当链接到大量通用 KG 时,适度的领域特定 KG 可以从下游任务的性能提升中受益。实验评估表明性能显着增强,Hits @ 10 指标最高可提高 44%。这个相对未被探索的研究方向可以催化知识图谱更频繁地融入知识密集型任务中,从而产生更稳健、更可靠的机器学习实现,这比普遍存在的 LLM 解决方案更少产生幻觉。