©作者2023。Open Access本文是根据Creative Commons Attribution 4.0 International许可获得许可的,该许可允许以任何媒介或格式使用,共享,适应,分发和复制,只要您对原始作者和来源提供适当的信誉,请提供与创意共享许可证的链接,并指出是否进行了更改。本文中的图像或其他第三方材料包含在文章的创意共享许可中,除非在信用额度中另有说明。如果本文的创意共享许可中未包含材料,并且您的预期用途不受法定法规的允许或超过允许的用途,则您需要直接从版权所有者那里获得许可。要查看此许可证的副本,请访问http://创建ivecommons。org/licen ses/by/4。0/。Creative Commons公共领域奉献豁免(http://创建ivecommons。Org/publi cdoma in/Zero/1。0/1。0/)适用于本文中提供的数据,除非在数据信用额度中另有说明。
摘要。生物碳泵(BCP)包括将有机碳从表面转移到深海的各种过程。这导致了长期的碳固执。没有BCP,AT-MospherCO 2浓度将高约200 ppm。 这项研究表明,中尺度和子尺度的海洋动力学可能会对颗粒有机物(POM)垂直分布产生重大影响。 我们的结果表明,诸如中尺度涡流之间的强烈尺度额叶区域可能导致从混合层深度(MLD)(MLD)向中质区域的重要积累和POM转运。 要得出这些结论,采用了多方面的方法。 它进行了原位测量和来自配备有水下视觉效果器(UVP6),卫星高度学数据和Lagrangian diag-Nostics的BGC-Argo河口的海洋积雪图像。 我们将研究重点放在非洲西南开普盆地17个月长的射流任务中观察到的三个强烈的雪分布特征。 这些特征位于中尺度涡流之间的额叶区域。 我们的研究表明,由额叶生成驱动的机制诱导的颗粒损伤泵具有通过增加将碳注入到水柱中的深度来增强生物泵的有效性。 这项工作还强调了建立针对涡流之间接口区域的重复采样活动的重要性。 这可以改善我们的没有BCP,AT-MospherCO 2浓度将高约200 ppm。这项研究表明,中尺度和子尺度的海洋动力学可能会对颗粒有机物(POM)垂直分布产生重大影响。我们的结果表明,诸如中尺度涡流之间的强烈尺度额叶区域可能导致从混合层深度(MLD)(MLD)向中质区域的重要积累和POM转运。要得出这些结论,采用了多方面的方法。它进行了原位测量和来自配备有水下视觉效果器(UVP6),卫星高度学数据和Lagrangian diag-Nostics的BGC-Argo河口的海洋积雪图像。我们将研究重点放在非洲西南开普盆地17个月长的射流任务中观察到的三个强烈的雪分布特征。这些特征位于中尺度涡流之间的额叶区域。我们的研究表明,由额叶生成驱动的机制诱导的颗粒损伤泵具有通过增加将碳注入到水柱中的深度来增强生物泵的有效性。这项工作还强调了建立针对涡流之间接口区域的重复采样活动的重要性。这可以改善我们的
摘要 耐药持久性 (DTP) 细胞群最初是在抗生素耐药性细菌生物膜中发现的。此后,在癌细胞中发现了具有类似特征的类似细胞群,并且与缺乏潜在基因组改变的治疗耐药性有关。虽然过去十年的进展提高了我们对 DTP 细胞在癌症中的生物学作用的理解,但对这些细胞在治疗耐药性中的作用的临床知识仍然有限。尽管如此,针对这一群体有望提供新的治疗机会。在本期观点中,我们旨在提供 DTP 表型的明确定义,讨论这些细胞的潜在特征、它们的生物标志物和脆弱性,并鼓励对 DTP 细胞进行进一步研究,这可能会提高我们的理解并促进开发更有效的抗癌疗法。
调节(或有限的速度)[7],[8],它可以实现广泛的应用和物理现象,例如时间逆转[8],[9],时间折射[10] - [12] - [12],基本界限[13],光束分裂[14],光束生成[15],光照射[16],旋转[16] [18],完美的吸收[19],参数放大[20],时间阻抗匹配[21]和时间瞄准[22]。近年来,该制度还经过古典物理学[23] - [27]。The modulation velocity can also vary uniformly, ranging from subluminal to superluminal speeds [28] – [32] , which introduces additional novel phenomena, including Doppler shifting [29] , [33] , [34] , magnetless nonreciprocity [35]–[37] , space-time reversal [38] , dynamic diffraction [39] ,不对称带隙[29],[40],[41]和分离[42],光偏射[43] - [45],量子宇宙学类似物[46]和减震波的产生[47]。最后,调制速度可以是不均匀的,加速度可以实现现象,例如移动镜[48],光子发射[49],chirping [50],光弯曲[51]和重力类似物[52] [52]。GGSTEM包括几个基本结构,包括界面,板,时空晶体和时空超材料。接口充当所有GSTEM的核心构建块[53],[54]。平板是通过堆叠以相同速度移动的两个接口[55],[56]来形成的。空间时间晶体是由具有不同特性的平板的定期重复而产生的[29]。纸张的组织如下。接下来,最后,通过将这些晶体的空间和时间周期减少到亚波长度和子周期量表[29],[40]来创建时空元素。在这里,我们介绍了一个新的基本类别结构,即时空楔。通过将两个时空接口与不同的速度相结合,形成了一个时空楔形,这是对应于时空图中的楔形或三角形结构的。在纯粹的空间表示中,作为横坐标和特性(例如折射率或电势)作为顺序的空间,这些楔子对应于收缩(闭合楔形)或扩展(开放楔形)板。第2节介绍了时空楔形的概念,作为召开空间楔形的扩展。然后,第3节提出了所有可能类型的时空楔形物的策略。
本信函确认了美国核能研究所 (NEI) 于 2024 年 7 月 31 日致美国核管理委员会 (NRC) 的信函,该信函标题为“远程应用中快速大容量部署反应堆 (RHDRA) 和其他先进反应堆的监管规定”(机构范围文件访问和管理系统接入号 ML24213A337)。NEI 信函及其相关附件包含潜在监管方法的提案,这些方法将支持大规模、快速部署先进反应堆,并满足 2024 年《加速部署多功能、先进核能用于清洁能源 (ADVANCE) 法案》第 208 节的要求。NRC 工作人员同意您在信函中概述的高级概念,工作人员没有发现 NRC 正在进行和计划的活动存在任何根本差距,这些差距会阻碍实施与微反应堆部署相关的计划商业模式。此外,工作人员支持 NEI 的立场,即为支持微反应堆部署而制定的策略和指导可以分阶段应用于其他先进反应堆设计。
1个法国新闻。“七人死后,雨后法国,瑞士和意大利死了。” https:// www。theguardian.com/world/article/2024/jun/30/dead-after-storms-lash-france-switzerland。2024年6月30日。2 Banerjee,Chandan,Bevere,Lucia,ET。 al。 “ Sigma 01/2024:2023年的自然灾难。” https:// www。 swissre.com/institute/research/sigma-research/sigma-2024-01.html。 2024年3月26日。 3 IPCC,核心写作团队,H。Lee和J. Romero(编辑) “气候变化2023 - 综合报告。” 2023。2 Banerjee,Chandan,Bevere,Lucia,ET。al。“ Sigma 01/2024:2023年的自然灾难。” https:// www。swissre.com/institute/research/sigma-research/sigma-2024-01.html。2024年3月26日。3 IPCC,核心写作团队,H。Lee和J. Romero(编辑)“气候变化2023 - 综合报告。” 2023。
并非每个人都相信,更多的家庭访问本身会有意义地减少产后孕产妇死亡。“这种扩张和更普遍的家庭探视计划不足以解决美国高级孕产妇死亡危机”。“在怀孕之前和期间获得信息和服务(分娩后1年)以及需要大大改善生殖和孕产妇保健的技术和人际关系质量。家庭探视计划应被视为更加雄心勃勃,全面努力的组成部分。”良好的孕产妇健康始于怀孕前良好的产前护理和妇女健康。Handler说:“健康的女性会导致健康的怀孕,从而导致健康的分娩患者和婴儿。”
在可耕种的景观,田间边缘,缓冲带和树篱中支持许多物种,包括鸟类,传粉媒介,天然敌人和小型哺乳动物。这些线性特征有助于野生动植物在我们的乡村中移动,连接半自然栖息地。建立自然网络是帮助野生动植物应对环境变化的关键,包括气候变化。现场边缘和树篱提供一系列生态系统服务;他们锁定碳帮助农场向净净净的碳移动,拦截了保护水彩的污染物。它们可以减慢水流来降低洪水风险。这些栖息地提供生态系统服务的能力受到其在景观中的管理和位置的强烈影响。在这里,我们提供了有关如何管理可耕地边缘和树篱的指导,以优化生产,环境和更广泛的社会的收益。
我们表明,高谐波光谱学为探测线性响应范围以外的准晶体的电子特性提供了高级途径。着眼于Aubry-André-Harper(AAH)链,我们从谐波发射强度中提取了多重型光谱,这是电子态在准晶体中电子状态空间分布的重要指标。此外,我们解决了迁移率边缘的检测,划定广义AAH模型中局部和扩展的特征状态的重要能量阈值。这些迁移率边缘的精确识别阐明了金属 - 绝缘体的跃迁以及这些边界附近的电子状态的行为。将高谐波光谱与AAH模型合并,为理解排序晶体中的本地化与扩展状态之间的相互作用提供了一个有力的框架,以在线性响应研究中未捕获的极宽的能量范围,从而为指导未来的实验研究提供了宝贵的见解。