天气观测数据是准确预报天气的支柱,对航空界影响巨大。研究人员探索了使用 FAA 航空气象摄像机 (AvCams) 得出的能见度估计值来补充阿拉斯加传统观测的概念。研究中使用的能见度估计值由图像分析能见度估计 (VEIA) 算法生成,该算法识别 AvCam 图像中的边缘并将这些边缘的强度与合成的晴天图像进行比较。
DoS 和 DDoS 攻击被广泛使用,并构成持续威胁。在这里,我们探讨概率包标记 (PPM),这是重建攻击图和检测攻击者的重要方法之一。我们提出了两种算法。与其他算法不同,它们的停止时间不是先验固定的。它取决于攻击者与受害者的实际距离。我们的第一种算法在最早的可行时间内返回图,并保证了较高的成功概率。第二种算法能够以更长的运行时间为代价实现任何预定的成功概率。我们从理论上研究了这两种算法的性能,并通过模拟将它们与其他算法进行比较。最后,我们考虑受害者获得与攻击图的各个边相对应的标记的顺序。我们表明,尽管与受害者更近的边往往比距离较远的边更早被发现,但差异比以前想象的要小得多。
6.3.14 对于大型物体或一组间距很近的物体,应至少在物体相对于障碍物限制面最高的点或边缘上显示顶灯,以指示物体的大致轮廓和范围。如果两个或多个边缘的高度相同,则应标出最靠近着陆区的边缘。当使用低强度灯时,其纵向间距不得超过 45 米(150 英尺)。当使用中强度灯时,其纵向间距不得超过 900 米(2950 英尺)
石墨烯纳米纤维(GNR)由于通过边缘结构和色带宽度的变化来精确调整电子性能的潜力,因此在纳米电子学上引起了显着关注。然而,GNR与高度渴望的锯齿形边缘(ZGNR)的合成,对旋转和量子信息技术至关重要,仍然具有挑战性。在这项研究中,提出了用于合成一类称为边缘延伸ZGNRS的新型GNR类的设计主题。此基序可以定期沿曲折边缘的边缘扩展进行控制。与融合到功能区轴交替侧面的双斜烯单元的特定GNR实例(3- Zigzag行宽的ZGNR)的合成。 所得的边缘延伸的3-ZGNR使用扫描探针技术以其化学结构和电子性能进行了全面的特征,并取决于密度功能理论计算。 此处展示的设计主题为综合各种边缘扩展的ZGNR范围开辟了新的可能性,扩大了GNR的结构景观,并促进了其结构依赖性电子特性的探索。与融合到功能区轴交替侧面的双斜烯单元的特定GNR实例(3- Zigzag行宽的ZGNR)的合成。所得的边缘延伸的3-ZGNR使用扫描探针技术以其化学结构和电子性能进行了全面的特征,并取决于密度功能理论计算。此处展示的设计主题为综合各种边缘扩展的ZGNR范围开辟了新的可能性,扩大了GNR的结构景观,并促进了其结构依赖性电子特性的探索。
(1)输入图像:模型的输入是大小为32×32×3的图像,其中32×32表示空间分辨率,3表示RGB通道(2)初始卷积层:卷积层应用于提取初始低级特征,例如提取初始低级特征,例如Edges和Tex-ters和Tex-ters。该层之后的输出的大小为16×16×32,其中32是过滤器生成的特征地图数量(3)瓶颈残留块:该体系结构的主要构件是瓶颈残留块。这些块对于特征提取很有效,并形成网络(4)过渡层的骨干:在最终的瓶颈块之后,速溶层进一步调整了特征的维度。输出大小减小到1×1×1290,代表高度连接的空间信息(5)完全连接的层:最后阶段是一个完全连接的层,可将功能映射到输出类概率中。输出大小为1×1×3,对应于带有3个输出类的分类任务
石墨烯纳米带 (GNR) 因其可通过改变边缘结构和带宽来精确调整电子特性的潜力而在纳米电子学中引起了广泛关注。然而,合成具有备受追捧的锯齿状边缘 (ZGNR) 的 GNR 仍然具有挑战性,这对于自旋电子学和量子信息技术至关重要。在这项研究中,提出了一种用于合成一种新型 GNR(称为边缘扩展 ZGNR)的设计图案。该图案能够以规则间隔沿锯齿状边缘受控地合并边缘扩展。成功演示了一种特定 GNR 实例(3 行锯齿状宽度的 ZGNR)的合成,其中双桑烯单元融合到带轴交替两侧的锯齿状边缘。使用扫描探针技术以及密度泛函理论计算,全面表征了所得边缘扩展 3-ZGNR 的化学结构和电子特性。这里展示的设计主题为合成多种边缘扩展的 ZGNR、扩展 GNR 的结构景观以及促进对其结构相关的电子特性的探索开辟了新的可能性。
我们研究了石墨烯型纤维中磁性边缘具有磁边缘的热电效应。分别采用静态的动态均值轨道理论,我们首先表明磁力出现在曲折边缘,用于库仑相互作用的窗口,随着量的大小增加,磁磁性显着增加。然后,我们在非平衡绿色功能方法的框架中使用Landauer形式主义来计算磁性六边形石墨烯池中的自旋和电荷电流,通过改变连接温度的不同量尺寸。虽然在非磁性封闭式石墨烯中,温度梯度驱动电荷电流,但我们观察到具有磁性锯齿形边缘的六边形石墨烯纤维的显着旋转电流。特别是,我们表明,在六角形的“元”配置中,受到弱库仑相互作用的约束,纯旋转电流只能由温度范围内的温度梯度驱动,这对于设备应用来说是有希望的。发现较大的平流可以产生更大的库仑相互作用的窗口,其中这种自旋电流是由磁性曲折边缘诱导的,并且电流的较大值。