自从船舶运营商撤回 Havila Harmony 号以来的几周里,OceanGate Expeditions, Ltd. 一直在努力让我们的任务专家、合作伙伴、研究人员、供应商和投资者了解我们的状态和计划。最后一刻的船舶撤离给 OceanGate Expedition 及其母公司 OceanGate, Inc. 带来了许多挑战。 这次探险的延迟不仅导致了大量媒体收入的损失,在取消之前的星期四,我们与一家大型互联网品牌签署了 110 万美元的赞助协议,但该协议也不得不取消。作为小公司,这两家公司都依赖私人投资者的数千万美元资金,才将项目推进到这个地步。我们的计划是在泰坦尼克号之后进行大规模股权融资,鉴于最近发生的事件,我们加快了这一进程。
• 下一个新泽西州计划是新泽西州经济发展局 (NJEDA) 管辖的一项计划。 • 下一个新泽西州计划的目的是吸引新投资进入新泽西州的人工智能和人工智能相关行业,创造新的就业机会,并为该州创造经济机会。 • 根据 SB 3432,NJEDA 可在符合条件的企业的首席执行官或同等级别官员提出申请并支付费用后,向符合条件的企业授予税收抵免,但须遵守《2020 年经济复苏法案》规定的限制。 • 要获得下一个新泽西州计划下的税收抵免资格,企业的首席执行官或同等级别官员应在申请时向当局证明:(1) 企业将在以下地点进行、收购或租赁资本投资:
摘要 生物技术可能有助于解决食品安全和保障挑战。然而,基因技术一直受到公众的严格审查,与媒体和公众话语的框架有关。这项研究旨在调查人们对食品生物技术的看法和接受程度,重点是转基因遗传修饰与基因组编辑。进行了一项在线实验,参与者来自英国(n = 490)和瑞士(n = 505)。向参与者展示了食品生物技术的主题,更具体地说,展示了转基因和遗传修饰以及基因组编辑的实验性变化片段(科学不确定性:高与低,媒体形式:新闻与用户生成的博客)。结果表明,与转基因遗传修饰相比,这两个国家的参与者对基因组编辑的接受程度更高。这些技术的普遍和个人接受度在很大程度上取决于参与者是否认为该应用有益、他们如何看待科学的不确定性以及他们所居住的国家。我们的研究结果表明,未来关于基因技术的交流应该更多地侧重于讨论使用农业技术与有形相关利益之间的权衡,而不是单方面关注风险和安全。
摘要 蛋白质是细胞中的关键分子,其丰度不仅在基因表达水平而且在转录后水平受到广泛调控。在这里,我们描述了一种酵母基因筛选方法,该方法能够系统地表征蛋白质丰度调控在基因组中的编码方式。该筛选方法结合了 CRISPR/Cas9 碱基编辑器来引入点突变,并对内源性蛋白质进行荧光标记以方便流式细胞仪读数。我们首先使用单个 gRNA 以及正向和负向选择筛选对酵母中的碱基编辑器性能进行了基准测试。然后,我们研究了 16,452 种基因扰动对代表各种细胞功能的 11 种蛋白质丰度的影响。我们发现了数百种调控关系,包括 GAPDH 同工酶 Tdh1/2/3 与 Ras/PKA 通路之间的新联系。许多已识别的调节因子特定于这 11 种蛋白质中的一种,但我们还发现了一些基因,这些基因在受到扰动时会影响大多数测试蛋白质的丰度。虽然更具体的调控因子通常作用于转录,但广泛的调控因子往往在蛋白质翻译中发挥作用。总的来说,我们的新筛选方法为蛋白质调控网络的组成部分、规模和连通性提供了前所未有的见解。
目前,CRISPR/Cas9 的使用是植物(包括生物量作物杨树)精确基因组工程的首选方法。在杨树中传递 CRISPR/Cas9 及其成分的最常用方法是通过农杆菌介导的转化,除了所需的基因编辑事件外,还会导致稳定的 T-DNA 整合。在这里,我们探索了通过 DNA 包被的微粒轰击将基因编辑试剂传递到模型树 Populus tremula x P. alba 中,以评估其开发无转基因、基因编辑树的潜力,以及其在特定靶位整合供体 DNA 的潜力。使用优化的转化方法,有利于再生暂时表达所传递供体 DNA 上基因的植物,我们再生了不含 Cas9 和抗生素抗性编码转基因的基因编辑植物。此外,我们报告了供体 DNA 片段在 Cas9 诱导的双链断裂处频繁整合,为靶向基因插入提供了机会。
摘要 遗传性视网膜营养不良 (HRD),例如视网膜色素变性、莱伯氏先天性黑蒙 (LCA)、Usher 综合征和视网膜劈裂症,是一组表现出遗传和表型异质性的遗传性视网膜疾病。症状包括进行性视网膜退化和视野缩小。一些患者会完全失明或完全失明。先进的测序技术改善了 HRD 的基因诊断,并开启了基因靶向治疗研究的新时代。继美国食品和药物管理局首次批准 RPE65 突变引起的 LCA 基因增强疗法后,目前正在进行多项临床试验,应用不同的技术。在这篇综述中,我们概述了 HRD 的基因治疗,并强调了四种不同的基因靶向治疗方法,这些方法有可能减缓甚至逆转视网膜变性:(1)基于病毒载体和非病毒基因传递,(2)基于 RNA 的反义寡核苷酸,(3)通过成簇的规律间隔短回文重复序列/cas9 系统进行基因组编辑,以及(4)光遗传学基因治疗。
碱基编辑器是 RNA 引导的脱氨酶,可实现位点特异性核苷酸转换。这些 Cas 脱氨酶融合蛋白的靶向范围主要取决于靶基因座处原间隔区相邻基序 (PAM) 的可用性,并且仅限于 CRISPR-Cas R 环内的窗口,其中单链 DNA (ssDNA) 可供脱氨酶接触。在这里,我们推断 Cas9-HNH 核酸酶结构域在空间上限制了 ssDNA 的可及性,并证明省略该结构域会扩大编辑窗口。通过将 HNH 核酸酶结构域与单体或异二聚体腺苷脱氨酶交换,我们还设计了具有 PAM 近端移位编辑窗口的腺嘌呤碱基编辑器变体 (HNHx-ABE)。这项工作扩展了碱基编辑器的靶向范围,并提供了明显更小的碱基编辑器变体。此外,它还提供了 Cas9 蛋白质工程的未来潜在方向,其中 HNH 结构域可以被作用于 ssDNA 的其他酶取代。
Prime 编辑 (PE) 是一种强大的基因组工程方法,能够将碱基替换、插入和删除引入任何给定的基因组位点。然而,PE 的效率差异很大,不仅取决于目标基因组区域,还取决于编辑细胞的遗传背景。在这里,为了确定哪些细胞因素会影响 PE 效率,我们针对 32 个 DNA 修复因子进行了有针对性的遗传筛选,涵盖了所有已报道的修复途径。我们表明,根据细胞系和编辑类型,错配修复 (MMR) 的消融可使 PE 效率提高 2-17 倍,涵盖多种人类细胞系、编辑类型和基因组位点。关键 MMR 因子 MLH1 和 MSH2 在 PE 位点的积累表明 MMR 直接参与 PE 控制。我们的研究结果为 PE 机制提供了新的见解,并提出了如何优化其效率。
CRISPR-Cas9 介导的基因组编辑的第一步是切割与 CRISPR 向导 RNA (gRNA) 中所谓的间隔序列互补的目标 DNA 序列。然而,一些 DNA 序列对 CRISPR-Cas9 切割具有抵抗性,这至少部分是由于 gRNA 折叠错误造成的。为了解决这个问题,我们设计了 gRNA,使其恒定部分具有高度稳定的发夹结构,并通过化学修饰进一步增强了它们的稳定性。“基因组编辑优化锁定设计”(GOLD)-gRNA 将基因组编辑效率提高了约 1000 倍(从 0.08% 到 80.5%),其他不同靶标的平均效率提高了 7.4 倍。我们预计,无论间隔序列组成如何,这种改进的 gRNA 都将实现高效编辑,并且在所需的基因组位点难以编辑时将特别有用。
加拿大税务局 (CRA) 为所有患有 1 型糖尿病 (T1D) 的个人提供高达 1,933 加元的不可退还的残疾税收抵免 (DTC)(2024 年联邦和省级抵免合计),无需任何理由,从 2021 年起。BCDiabetes 客户已部分填写所需的表格在此处,您可以打印出来。然后只需填写第 1、2、15 和 16 页(第 3-14 页不是必需的)。在第 15 页底部的手绘圆圈处输入您患上 T1D 的日期,在第 16 页顶部的手绘圆圈处输入您成为我的患者的年份。然后将其通过 questions@bcdiabetes.ca 发送到诊所让我签名。我会免费签字。要想在 2021 年之前的几年里符合 DTC 的“旧规则”,对于患有 1 型或 2 型糖尿病的人(以及 2022 年及以后患有 2 型糖尿病的人),需要做大量工作。主要障碍是记录每周 14 小时以上的资格标准,这些资格标准需要花在以下糖尿病琐事上: 测试血糖(血糖监测和 CGM) 计算胰岛素剂量 注射胰岛素 记录血糖值并分析趋势花在确定饮食摄入量和/或身体锻炼上的合理时间