。cc-by 4.0国际许可证(未经同行评审证明)获得的是作者/资助者,他已授予Biorxiv授予Biorxiv的许可,以永久显示预印本。这是该版本的版权所有,该版本于2021年7月26日发布。 https://doi.org/10.1101/2021.07.26.453883 doi:biorxiv preprint
未通过同行评审认证)是作者/资助者。保留所有权利。未经许可就不允许重复使用。此预印本的版权持有人(该版本发布于2021年5月21日。; https://doi.org/10.1101/2021.03.15.435378 doi:biorxiv Preprint
有针对性的基因组编辑具有治疗需要蛋白质替代疗法的疾病的巨大治疗潜力。为了开发独立于特定患者变形的平台,可以将治疗转基因插入安全且高度转录的基因座,以最大程度地提高蛋白质表达。在这里,我们描述了一种实现人类造血干/祖细胞(HSPCS)中有效基因靶向有效基因的方法,并通过红细胞动力学谱系对临床相关蛋白质的鲁棒表达。使用CRISPR-CAS9,我们在内源性α-珠蛋白启动子的转录控制下整合了不同的转基因,从而概括了其高和红细胞的特异性表达。源自靶向HSPC的促成的细胞分泌不同的治疗蛋白,该蛋白保留了酶活性和交叉校正患者细胞。此外,修饰的HSPC在移植小鼠中保持长期重生和多系分化潜力。总的来说,我们为不同的治疗应用(包括血友病和遗传的代谢疾病)建立了一个安全且通用的基于CRISPR-CAS9的HSPC平台。
神经科学的一个主要问题是,研究结果是动物临床前研究到临床结果的不良翻译性。比较神经科学可以通过研究多种物种在神经回路功能的物种特异性和一般机制之间差异来克服这一障碍。针对性的神经回路的操纵通常取决于遗传解剖,并且该技术的使用仅限于几种模型物种,从而限制了其在比较研究中的应用。然而,基因组学的持续进展使得在越来越多的物种中可以实现遗传解剖。为了证明比较基因编辑方法的潜力,我们开发了一种病毒介导的CRISPR/CAS9策略,该策略预测靶向> 80种啮齿动物物种中的催产素受体(OXTR)基因。该策略专门降低了所有评估物种(n = 6)的OXTR水平,而不会引起总体神经元毒性。因此,我们表明基于CRISPR/CAS9的工具可以同时在多种物种中起作用。因此,我们希望鼓励比较基因编辑并改善神经科学研究的转化性。
疟原虫的无性血液阶段很容易通过同源重组来适应遗传修饰,从而使寄生虫基因的功能性研究在生命周期的这一部分中并非必不可少。然而,常规的反向遗传学不能应用于无性血液阶段复制中必不可少的基因的功能分析。已经开发了各种策略,用于浆细胞的条件诱变,包括基于重组酶的基因缺失,可调节启动子以及mRNA或蛋白质破坏稳定系统。在其中,可二聚Cre(DICRE)重组酶系统已成为p中有条件基因缺失的强大方法。恶意。在该系统中,噬菌体CRE以两种单独的酶无活性多肽的形式表达,每种酶融合了不同的雷帕霉素结合蛋白。雷帕霉素诱导的两个成分的异二聚化恢复重组酶活性。我们已经在啮齿动物疟原虫p。berghei,并表明可以在哺乳动物和蚊子寄生虫阶段具有很高的效率来实现雷帕霉素诱导的floxed DNA序列切除。此工具可用于投资基本基因的功能,不仅在无性血液阶段,而且在疟原虫生命周期的其他部分。
通过RNA引导的核酸酶(例如SP Cas9)编辑的基因组编辑,已用于许多不同的植物特种中。然而,尚未得到充分记录在多大程度上可以通过多重独立基因座对准。在这里,我们基于高度内含器优化的ZCAS9I基因开发了一个工具包,该基因允许组装核酸酶构建体,该核酸酶构建体表达高达32个单导RNA(SGRNA)。我们使用此工具包探索了两个主要模型物种中多路复用的限制,并报告了无基因八个八个八杆的分离(8 3)Nicotiana Benthamiana和Duodecuple(12 3)拟南芥Thaliana thaliana突变线(分别是T 1和T 2,分别是T 1和T 2)。我们开发了新的本坦氏菌(N. benthamiana)的新颖的反式标记,最重要的是SL -Fast2,可与良好的拟南芥种子植物植物标记物和FCY-upp相当,并基于在存在先例的情况下产生有毒的5-氟中性含量。用九个不同的sgrNA靶向八个基因,并依靠fcy-upp选择非转基因t 1,我们确定了n。benthamiana突变型的n。benthamiana突变线,并具有惊人的高效效率:所有ana-属于所有基因的植物(大约112/11/11/11 target serited)。此外,我们在A. thaliana的24个sgrnas阵列获得了12个基因。效率在a中的显着较低。thaliana,我们的结果表明CAS9的可用性是这种高阶多路复用应用程序中的限制因素。我们通过表型筛选和扩增子测序的结合来识别十二指肠突变系。所呈现的资源和结果为如何使用多路复用来生成复杂的基因型或在功能上询问候选基因的基团。
CRISPR-CAS9基因编辑正在作为基因组突变的前瞻性疗法出现。但是,当前的编辑方法主要针对具有特异性突变的患者的相对较小的人群。在这里,我们描述了一种可能适用于多种心脏病患者的心脏保护策略。我们使用基础编辑来消除心脏病的主要驱动因素Camkiiδ的氧化激活位点。我们在源自人类诱导的多能干细胞的心肌细胞中显示,这些干细胞编辑了CAMKIIδ基因以消除氧化 - 敏感的蛋氨酸残基赋予保护免受缺血/再灌注(IR)损伤的保护。此外,在IR时,CAMKIIΔ编辑使心脏从其他严重的损害中恢复功能。CAMKIIδ基因编辑可能代表心脏病治疗的永久和晚期策略。
ene编辑提供了临床验证的潜力,可以治疗多种遗传疾病,而这些遗传疾病几乎没有治疗方法。由于通过基因编辑对大多数遗传疾病的研究和治疗需要在体内进行编辑,因此在临床上相关的方法,可以在哺乳动物1中有效地传递精确基因编辑剂到组织中的有效递送,而2继续在进步中发挥关键作用。腺相关病毒(AAV)已用于在人类疾病3,4的动物模型3中输送许多编码许多治疗蛋白的基因。AAV已成为一种人口递送方法,其靶向各种临床相关的组织以及相对良好的安全性和有利的安全性。基础编辑器8,9在体外和人类遗传疾病的动物模型中,有效地安装了针对性的过渡突变1,10。与核酸酶介导的基因编辑不同,碱基编辑不需要双链DNA断裂,因此产生了最小的不需要的indel副产物,染色体易位,染色体易位11,染色体非整倍型12,大deletions 13,14,p53激活15,16和Chromothripsis 17。基本编辑器最近进入临床试验,通常太大而无法适应单个AAV,该AAV的货物尺寸限制约为4.7 kb,不包括倒置的终端重复序列(ITRS)18,19。除了基本编辑器本身外,提供基本编辑器的AAV还必须包括指导RNA,启动器驱动基本编辑器和单个指南RNA表达以及顺式调节元素。