在过去的十年中,非病毒DNA模板递送已与工程核酸酶一起使用,以靶向造血茎和祖细胞中的单链DNA序列。虽然对基因治疗有效,但该方法仅限于简短的DNA供体模板,从而限制了其对基因矫正的应用。为了扩大其范围,我们使用千层长的圆形单链DNA供体模板和TALEN技术开发了一个编辑过程。我们的结果表明,CSSDNA编辑过程可在可行的HSPC中实现高基因插入频率。与常规的AAV编辑过程相比,CSSDNA编辑的HSPC显示出更高的植入和维持鼠模型中基因编辑的倾向。这种积极的结果部分是由于较高水平的原始编辑的HSPC,更静止的代谢状态以及骨髓粘附标记的表达升高。我们的发现突出了CSSDNA作为基因治疗应用的通用和有效的非病毒DNA模板的强大潜力。
从表型上看,编辑植物的营养生长与野生型相似。所选 8 个品系的果实质量参数显示,重量、长度、颜色和硬度均有所变化,具体取决于品系,其中大多数品系的长宽比低于野生型,与对照相比,转基因果实的伸长率较低且更方。此外,几乎所有编辑品系的果实硬度均显著增加,FaPG1 编辑程度与收获时的果实硬度之间存在明显的正相关关系。
基因编辑的介绍和历史 在匈牙利农业工程师卡尔·埃尔基首次提出生物技术一词后,也许很少有人会想到这项技术会用于攻击人类社会。在工作开始时,生物技术被提出为人类社会创造适当的治疗条件、健康的营养、更好的生活和充满希望的未来的一种明确而合适的解决方案。然而,随着时间的推移,这项技术的阴暗面以生物恐怖主义威胁的形式被提出,这导致在生物技术的彩色名称中使用“黑暗生物技术”来表示生物恐怖主义袭击。[1,2]。在上个世纪以技术为根基的军事发展中,包括现代化学和物理学在内的各种科学分支是主要因素。目前的趋势表明,下一次进化将植根于生物科学。生物技术的发展促进了生物武器和威胁的发展,大规模杀伤性武器发展史上的第三次技术浪潮将是生物技术。生物技术具有军民两用的可能性。换言之,生物技术既有益又有害。基于此,与生物学有关的科学,特别是遗传工程和生物技术,除了能够用于推动医学和治疗科学的发展外,同时,这些研究还可以在军事领域以医学研究为掩护进行,每天都会设计和生产出更新的生物制剂。在第一种情况下,我们将看到人类健康和社会的进步,但在第二种情况下,它将导致生物恐怖袭击和人类死亡。这种威胁源于新技术,这些新技术除了在科学技术上取得进步外,还能够生产新的微生物(人工合成)[3-6]。需要说明的是,2012年,一位美国人在《微生物生物技术杂志》上发表了一篇题为《生物威胁的未来》的文章,其中提出了人类社会灭绝的三种理论之一,即大规模核战争的可能性以及巨大的陨石撞击地面,导致传染性传染病[7]。与生物技术相关的发展的转折点是人类基因组计划的开始,该计划始于1991年,最终,随着在白宫举行的国际会议(2000年),人类基因组计划的完成向国际社会公布,该计划的主要执行者(弗朗西斯·柯林斯和克雷格·文特尔)也宣布了这一计划的完成,并于2009年被批准用于开发人类基因组计划。
134 # 训练前和训练后 PD 男性比较是较大的 PD 男性与训练后 PD 男性比较的一个较小子集;但是,前一个子集仅包括具有训练前和训练后样本的 PD 患者,以便进行更严格的患者内分析。137 * 使用 138 Mann-Whitney 检验(p 值 > 0.05),所有成对比较均未达到统计显着性水平。每组的值均以平均值和 139 SEM(平均值的标准误差)给出。140
1弗里伊大学柏林,化学与生物化学研究所,蒂埃拉利(Thielallee)63,14195德国柏林2.美国密歇根州底特律5当前隶属关系:堪萨斯大学堪萨斯大学劳伦斯大学药物学系6美国密歇根州立大学,密歇根州立大学,密歇根州立大学妇产科和生殖生物学系,美国密歇根州密歇根州,美国密西根州,美国7.这些作者7同等贡献:用CRISPR-CAS9进行蛋白质标记可以研究其本机环境中蛋白质功能的研究,但受到低同源指导修复(HDR)效率的限制,导致速率低。我们使用含有抗生素耐药性盒的HDR供体质粒提出了一条详细的管道,用于快速选择基因编辑的细胞。我们的协议简化了人类细胞中的n-或c-末端标记,可以在单个克隆步骤中启用HDR供体质粒制备。
由水稻白叶枯病 (BB) 病原菌 (Xoo) 引起的水稻细菌性叶枯病威胁着全球粮食安全和小规模水稻生产者的生计。对来自亚洲、非洲和美洲的 Xoo 样本的分析表明,尽管全球大米贸易强劲,但其分布却呈现出令人惊讶的大陆隔离现象。本文,我们报告了坦桑尼亚前所未有的 BB 疫情。与地方性的 Xoo 不同,病原菌株携带针对蔗糖转运蛋白 SWEET11a 并抑制 Xa1 的亚洲型 TAL 效应物。系统基因组学将这些菌株与来自中国的 Xoo 菌株聚集在一起。非洲水稻品种没有携带合适的抗性基因。为了保护非洲水稻生产免受这种新出现的威胁,我们开发了一种混合 CRISPR-Cas9/Cpf1 系统来编辑东非优良品种 Komboka 的三个 SWEET 启动子中的六个 TALe 结合元素。经过编辑的品系表现出对亚洲和非洲Xoo菌株的广谱抗性,包括最近在坦桑尼亚发现的菌株。这一策略可能有助于保护全球水稻作物免受BB大流行的影响。
传记草图Anna Cereseto,博士是特伦托大学分子生物学实验室的主要研究者,并担任Cibio系副总监。她于1990年获得热那亚大学的生物科学学位,此后她搬到了美国马里兰州贝塞斯达的美国国立卫生研究院(NIH),研究逆转录病毒的分子生物学。1998年,Cereseto博士在康奈尔大学担任博士后职位,并成为纽约西奈山医学院基因治疗研究所的讲师。在2000年,她回到意大利,在罗马的伊斯蒂托图超级迪·萨尼塔(ISTITUTO SUPERIOREDIANITà(ISS)工作,然后加入了Trieste的国际基因工程与生物技术中心(ICGEB)。2003年,Cereseto博士搬到了比萨的Scuola Normale Superiore(SNS)担任助理教授,2010年,她成为特伦托大学的教授。在特伦托(Trento),她领导着一个生物技术研究小组,该研究小组着重于基因组疗法的基因组编辑,特别着重于囊性纤维化。
。CC-BY 4.0 国际许可证永久有效。它是在预印本(未经同行评审认证)下提供的,作者/资助者已授予 bioRxiv 许可,可以在该版本中显示预印本。版权持有者于 2022 年 11 月 16 日发布了此版本。;https://doi.org/10.1101/2022.11.16.516784 doi:bioRxiv 预印本
1魁北克研究中心大学医院中心 - 加拿大魁北克G1V 4G2的拉瓦尔大学; 2魁北克大学心脏病学研究所(CRIUCPQ) - 加拿大魁北克G1V 4G5的Laval University,加拿大魁北克大学的心脏病学研究中心; 3舍布鲁克大学医院中心(CHUS)和CRCHUS,魁北克J1H 5N4,Sherbrooke的CRCHUS 3医学遗传学服务; 4加拿大魁北克G1V 0A6大学Laval Cancer Research Center,加拿大魁北克; 5加拿大魁北克G1V 0A6,魁北克省,魁北克省法学与工程学院生物化学,微生物学和生物信息学系; 6加拿大魁北克G1V 0A6牙科医学学院口腔生态学研究小组,加拿大魁北克; 7加拿大魁北克G1V 0A6魁北克大学牙科医学学院Hérelle细菌病毒参考中心的7félix; 8国家科学研究中心(CNRS),Luminy Campus,13288 Marseille Cedex 09,Luminy Campus国家科学研究中心(CNRS)的建筑和功能; 9生物大分子的建筑和功能,Aix-Marseille大学,Luminy Campus,13288 Marseille Cedex 09,法国
摘要 基于 CRISPR-dCas9 的靶向表观基因组编辑工具可实现对各种基因组修饰的精确操作和功能研究。然而,这些工具通常表现出相当大的上下文依赖性,靶基因和细胞类型之间的功效差异很大,这可能是由于染色质修饰的潜在差异造成的。虽然同时招募多个不同的“效应子”染色质调节剂可以提高功效,但这些系统通常无法控制哪些效应子结合及其空间组织。为了克服这个问题,我们创建了一个新的模块化组合表观基因组编辑平台,称为 SSSavi。该系统充当与 dCas9 融合的可互换和可重新配置的对接平台,可同时招募多达四种不同的效应子,从而可以精确控制和重新配置效应子组成及其结合的空间顺序。我们展示了 SSSavi 系统的活性和特异性,并将其与现有的多效应子靶向系统进行比较,以确定其功效。此外,通过改变效应子募集的空间顺序,在多个靶基因和细胞系中,我们证明了效应子募集顺序对于有效转录调控的重要性。总之,该系统提供了探索效应子共同募集到特定位点的能力,从而可能增强对之前对靶向表观基因组编辑有抵抗力的染色质环境的操纵。