OTOF 基因编码耳蜗内毛细胞中表达的耳蜗蛋白,其不同突变会诱发一种耳聋,而耳聋是人类无综合征隐性听觉神经病谱系障碍的主要原因。我们报告了使用与不同 Cas9 成分(mRNA 或蛋白质)相关的 CRISPR 系统,在单链寡脱氧核苷酸 (ssODN) 辅助下诱导同源定向修复 (HDR),生成了第一个 OTOF 突变大型动物模型。使用不同浓度的两个靶向外显子 5 和 6 的 sgRNA 与 Cas9 mRNA 或蛋白质 (RNP) 结合,并与靶向外显子 5 中 HDR 的 ssODN 模板混合,该模板包含两个 STOP 序列。共出生 73 只羔羊,其中 13 只出现插入/缺失突变(17.8%),其中 8 只(61.5%)通过 HDR 发生敲入突变。较高浓度的 Cas9-RNP 能更有效地诱导靶向突变,但对胚胎存活率和妊娠率有负面影响。本研究首次报道了 OTOF 破坏绵羊的产生,这可能有助于更好地理解和开发与遗传疾病相关的人类耳聋的新疗法。这些结果支持使用 ssODN 辅助的 CRISPR/Cas 系统作为牲畜基因编辑的有效工具。
疟疾是由疟原虫属的原生动物寄生虫引起的,并且仍然是全球健康问题。寄生虫具有高度适应的生命周期,其中包括脊椎动物宿主中的连续无性复制和蚊子载体围绕中的性成熟。寄生虫的遗传操纵对破译疟原虫基因功能的功能具有重要作用。常规的反向遗传工具不能用于研究无性血液阶段的基本基因,从而需要制定条件策略。在各种此类策略中,雷帕霉素可诱导的可二聚化CRE(DICRE)重组酶系统是一种有条件地编辑人类感染的恶性疟原虫和啮齿动物疟疾模型寄生虫寄生虫P. Berghei的强大方法。我们先前生成了表达二甲虫的berghei线,并通过有条件地删除了几个必不可少的无性阶段基因来验证它,从而揭示了它们在孢子虫中的重要作用。另一个有效的工具是CRISPR/CAS9技术,该技术已启用了具有更高精度和特异性的目标基因组编辑,并且在疟原虫属中具有大量先进的基因组工程。在这里,我们通过在寄生虫中整合了Dicre盒和荧光标记来开发新的Berghei寄生虫线,以组成表达Cas9。由于CRISPR/CAS9和DICRE的双重整合,这些新系列允许同时进行无与伦比的基因修饰和条件调节。为了说明这种新工具的多功能性,我们有条件地淘汰了编码贝尔格(P. Berghei)类似claudin的apicomplexan微米蛋白(夹具)的基本基因,并确认了夹具在侵入红细胞细胞中的作用。
HAL 是一个多学科开放存取档案库,用于存放和传播科学研究文献,无论这些文献是否已出版。这些文献可能来自法国或国外的教学和研究机构,也可能来自公共或私人研究中心。
受精卵电穿孔是小鼠中 CRISPR/Cas9 介导的基因组编辑中复杂的原核注射程序的快速替代方法。然而,目前的电穿孔方案要么需要投资专门的电穿孔仪,要么需要对受精卵进行腐蚀性预处理,这会损害胚胎的活力。在这里,我们描述了一种易于适应的方法,通过使用带有合成 CRISPR/Cas9 组件的普通电穿孔仪对完整的受精卵进行电穿孔,高效地在小鼠中引入特定突变,并且技术要求最低。该方案可有效处理来自各种遗传背景的受精卵,并与其他 CRISPR 核酸酶(如 Cas12a)兼容。
人类基因组学面临的一个主要挑战是破译序列与功能之间的特定关系。然而,现有的用于在原生基因组背景下进行位点特异性超突变和进化的工具有限。在这里,我们提出了一种用于长距离、位点特异性超突变的新型可编程平台,称为解旋酶辅助连续编辑 (HACE)。HACE 利用 CRISPR-Cas9 来靶向进行性解旋酶-脱氨酶融合,该融合会在较大的 (>1000 bp) 基因组间隔内引起突变。我们应用 HACE 来识别 MEK1 中导致激酶抑制剂抗性的突变,剖析 SF3B1 依赖性错误剪接中各个变体的影响,并评估 CD69 刺激依赖性免疫增强剂中的非编码变体。HACE 提供了一种强大的工具,可用于研究编码和非编码变体、揭示组合序列与功能的关系以及发展新的生物功能。
摘要木薯(Manihot esculenta crantz)是一种关键的淀粉根作物,在全球范围内就粮食作物的意义排名第六,并为居住在热带地区的8亿个人提供了维持。超出其作为食物来源的关键作用,木薯也是生物材料的基本水库。木薯主要在肥沃的,低雨后的环境中蓬勃发展,面临着各种挑战,包括对病毒疾病的易感性,快速的后后恶化以及与氰基糖苷相关的潜在毒性。用于增强或引入特定性状的常规育种方法,尽管有效,但尤其是耗时的,促使人们探索了替代技术。基因组编辑工具,以CRISPR/CAS9系统为例,由于其简单性,成本效益和效率而提供了有希望的途径。这项全面的评论批判性地研究了基因组编辑在木薯中的应用,重点是增强关键特征,例如淀粉质量,氰化物排毒和对疾病的耐药性。此外,它精心探讨了该领域遇到的挑战,提供潜在的解决方案,并调查了先进的技术,包括基础编辑和质量编辑,这对推进木薯育种的努力保持了巨大的希望。
ONJCRI 首席执行官兼拉筹伯大学癌症医学院院长 Marco Herold 教授表示:“我们确信这项工作将鼓励其他研究团队使用这种 Cas12a 临床前模型,该模型与筛选库相结合,是一套强大的新基因编辑工具,可提高我们对许多不同癌症背后机制的理解。”
工程设计是设计系统,组件或过程的过程,以满足约束内的所需需求和规格。这是一个迭代,富有创造力的决策过程,在该过程中,基本的科学,数学和工程科学被应用于将资源转换为解决方案。工程设计涉及确定机会,开发需求,执行分析和综合,生成多个解决方案,对要求,考虑风险和进行权衡,以在给定情况下获得高质量的解决方案。仅出于说明目的,可能的约束示例包括美学,代码,可构建性,成本,符合人体工程学,可扩展性,功能性,互操作性,法律考虑,可维护性,生产能力,销售性,政策,法规,规划,标准,标准,可持续性,可持续性或可用性。
到目前为止,唯一获批的 CRISPR 疗法 CASGEVY 用于治疗镰状细胞病和β地中海贫血。然而,CASGEVY 是一种体外 CRISPR 疗法,从患者体内取出细胞并在体外进行编辑然后再重新注入,而 NTLA-2002 是一种体内 CRISPR 疗法,其中靶向基因编辑直接发生在体内。