征文:教育和教育研究中的人工智能国际研讨会 (AIEER) AIEER 2024 教育和教育研究中的人工智能国际研讨会是第 27 届欧洲人工智能会议 ECAI 2024 [https://www.ecai2024.eu/] 的一部分。本次研讨会定于 2024 年 10 月 19 日至 20 日星期六和星期日举行。 研讨会范围 本次研讨会有两个不同的重点,旨在更广泛地面向教育人工智能领域。 第 1 部分。由社会科学主导的讨论,讨论人工智能应用可能有助于解决的教育中的实际问题。这包括教育和教学人工智能的研究,也包括社会科学、经济学和人文学科,包括所有学科,如教育和教学实际行动、以教育需求为重点的劳动力市场研究、教育史和相关教育文化遗产,以及决策和行为科学观点的信息预测。一方面,我们关注人工智能、教育和社会之间的联系。这包括定量和定性研究、分析教育和劳动力市场数据的数据科学方法、推荐系统的人工智能方法以及数字化学习。另一方面,我们关注如何使用人工智能来突破该领域的界限。这包括开发新方法(包括使用人工智能的方法)、寻找和提供可访问的新数据源、丰富数据等等。在这两种情况下,不同观点之间的沟通和相互理解至关重要,这也是本次研讨会的目标之一。更广泛地说,我们感兴趣的是人工智能方法如何影响教育的所有领域以及企业和劳动力市场。这包括从小学到高等教育的所有教育部门如何受到人工智能方法的影响和对其作出反应的方法。用人工智能方法设计数字化未来为教育提出了几个问题:在最广泛的层面上,立法和规范问题;在公司层面,关于投资决策以及如何保持生产力和劳动力的问题;在个人层面,关于资格以及哪些技能需要应用和可能重新学习的问题。因此,技能和资格是教育和教育研究中人工智能的核心。第 2 部分。关于可以开发哪些人工智能应用程序(以及如何开发)来解决第 1 部分提出的问题的(计算机科学主导)讨论。使用基于人工智能的系统来支持教学或学习已经发展了 40 多年,但近年来,由于 COVID-19 大流行期间电子学习工具的使用增加以及最近生成人工智能的爆炸式增长,其增长显着增加。我们正处于这一领域发展的关键时刻,人工智能专家和教育专家必须携手合作,以在教学过程中最佳地利用这项技术。本次研讨会旨在为展示新提案和反思这一具有如此社会意义的领域的最新技术创造空间。在第一部分中,我们特别关注人工智能的技术方面,重点关注用于内容创建(生成式人工智能)、学生分析(机器学习)、学习分析或教师可解释的人工智能方法的具体技术
在技术革命时代,需要进行实质性研究来评估辅助技术 (AT) 对有特殊需要儿童的教育需求的有效性。尽管已经进行了研究来检验将辅助技术整合到迎合 CWSN 的教学内容中的实用性。然而,在发展中国家,特别是在巴基斯坦,这仍然是一个较少探索的领域。此外,人们对在巴基斯坦使用 AT 的认识不足。本文讨论了如何利用辅助技术有效地教育 CWSN 并改变他们的生活。它还探讨了与其可访问性和可用性相关的挑战。采用案例研究设计,并与管理员、协调员和教师进行了半结构化访谈。访谈被转录并使用主题分析进行分析。研究结果表明,AT 不仅可以提高 CWSN 的生活质量,还可以促进他们的整体福祉。
2025 年 1 月 5 日——安全措施得到加强。曼尼普尔邦的 Kangpokpi 区,SP ...陆军表示,“在执行任务时。班迪波拉区,一辆车...
美国国家航空航天局和美国国防部正在实施支持“智能”飞机发动机未来愿景的项目,以提高飞机推进系统的可负担性、性能、可操作性、安全性和可修复性。智能发动机将具有先进的控制和健康管理功能,使这些发动机能够自我诊断、自我预测和自适应,以根据发动机的当前状况或车辆的当前任务优化性能。传感器是实现智能发动机愿景所必需的关键技术,因为它们依赖于准确收集发动机控制和健康管理所需的数据。本文从控制和健康管理的角度回顾了支持智能发动机未来愿景的预期传感器要求。推进控制和健康管理技术在主动组件控制、推进健康管理和分布式控制等广泛领域进行了讨论。在这三个领域中,我们将描述单个技术,讨论控制反馈或健康管理所需的输入参数,并总结用于测量这些参数的传感器性能规格。
为本报告的目的,我们通过选定的 1:1 访谈专门测试准备程度。我们举办了 3 次物流圆桌会议,重点关注该行业的子集,例如:港口、跨站点和最后
摘要:叶酸受体-α(FR-α)在许多上皮癌中过度表达,包括卵巢癌、子宫癌、肾癌、乳腺癌、肺癌、结肠癌和前列腺癌,但在肾脏、唾液腺、脉络丛和胎盘等正常组织中表达有限。因此,FR-α已成为向FR阳性肿瘤输送治疗剂和成像剂的有希望的靶点。已经开发了一系列基于叶酸的PET(正电子发射断层扫描)放射性药物,用于选择性靶向FR阳性恶性肿瘤。本综述概述了迄今为止关于叶酸衍生的PET放射性结合物的设计、放射合成和用于靶向FR阳性肿瘤的效用的研究进展。本文主要介绍了用氟-18(t 1 / 2 = 109.8 分钟)和镓-68(t 1 / 2 = 67.7 分钟)标记的叶酸放射性结合物的结果,但也讨论了用“外来”和新 PET 放射性核素标记的叶酸,例如铜-64(t 1 / 2 = 12.7 小时)、铽-152(t 1 / 2 = 17.5 小时)、钪-44(t 1 / 2 = 3.97 小时)、钴-55(t 1 / 2 = 17.5 小时)和锆-89(t 1 / 2 = 78.4 小时)。对于肿瘤成像,迄今为止报道的 PET 放射性标记叶酸中,除了 [ 18 F]AzaFol 之外,没有一种完成了从实验室到临床的旅程,该药物在一项多中心首次人体试验中成功用于转移性卵巢癌和肺癌患者。然而,在不久的将来,我们预计会有更多基于叶酸的 PET 放射性药物的临床试验,因为临床对成像和 FR 相关恶性肿瘤的治疗越来越感兴趣。
空间交通管理和协调 (STM/C)、应急管理 (EM)、研究以及全球导航卫星系统 (GNSS) 的应用和用户。所确定和采访的部门在国家安全、经济和社会中发挥着重要作用。SWAG 制定了一套可以针对所有部门提出的通用问题和一套针对特定部门的问题。对于大多数部门,焦点小组用于收集调查信息。GNSS 部门规模庞大且种类繁多,因此信息将在 2 年或更长时间内通过在线调查和焦点小组收集。GNSS 部门调查正在进行中,结果未在随附报告中呈现。
空气动力学、结构、材料、推进、电子和系统。NAL 在 20 世纪 70 年代最杰出的工程成就是开发了用于测试飞机疲劳寿命的全尺寸疲劳试验设施,这对延长各种飞机的寿命做出了重大贡献。到 20 世纪 70 年代中期,NAL 已成为印度航空领域的主要参与者之一。它被公认为管理最完善的国家实验室,承担了 100 多个航空航天领域的高科技研发项目。NAL 在此期间活动的一个非常引人注目的特点是数字“”·设备开发能力范围令人惊叹,例如数据记录和负载测量系统、温度控制器等。一个非常成功的故障分析和事故调查小组逐渐发展起来。这项活动旨在满足印度航空航天组织的需求。许多涉及飞机、直升机和用于国防飞机的地面设备的事件/事故的调查被 IAF(印度空军)、HAL(印度斯坦航空有限公司)、MoCA(民航部)等提交给实验室进行调查。截至目前,该小组已调查了 1,500 多起民用和军用飞机事故/事件。NAL 将探索在故障分析中引入人工智能 (AI) 和数据分析,以快速获得结果。纤维增强塑料 (FRP) 试验工厂的建立是为了建造大型机鼻雷达罩来容纳敏感的电子设备。
随着社会电气化趋势,机场面临着不可避免的电动汽车(电动汽车)和电动航空潜在升高(EA)的不可避免的过渡。对于航空,短途航班首先是燃料交换到电气运输的排队。这项工作研究了Visby,瑞典的机场以及EA和EV充电对电力系统的影响。它使用了一年操作中测得的机场负载需求以及模拟的EA和EV充电配置文件。太阳能光伏(PV)和电池电池储能系统(BES)进行了建模,以分析潜在的技术 - 经济增长。用四种方式对BESS电荷和放电控制进行建模,包括新型的多目标(MO)调度,以结合自消耗(SC)增强和峰值功率。将每个模型方案进行比较的峰值剃须能力,SC速率和付款额(PBP)。还评估了BESS控件的年度退化和相关成本。结果表明,新颖的MO调度在峰顶剃须和SC方面表现良好,从而有效地减少了Bess的闲置时期。MO调度还通过名义经济参数导致电池控制最低的PBP(6。9年)。此外,对PBP的灵敏度分析表明,峰值关税显着影响BESS投资的PBP。
ALN系统用IDP替换了有关学校行动/学校行动以及学习和技能计划(LSP)的学习者的现有支持计划(包括SEN的陈述,个人教育计划(IEPS))使用IDP。在确定25岁以下的儿童或年轻人的情况下,他们通常有权获得IDP,无论他们在哪里受过教育。上面的问题3描述了ALN系统何时以及如何为特定的儿童群体上线。