摘要 脑电图(EEG)是一种由多个通道组成,用于记录一定时间段内的脑电波活动的工具。脑电图可用于诊断癫痫。可以通过对EEG信号进行通道选择优化来分析EEG癫痫通道,即使用空间选择(SS)和粒子群优化(PSO)方法。在这个最终项目中,我们创建了一个系统来选择癫痫脑电图通道并优化这些通道。在进行渠道选择与优化之前,首先利用K最近邻(K-NN)对输入到渠道选择与优化系统的数据进行分类,得到最佳的K值。本次癫痫脑电信号通道选择采用空间选择方法,优化过程采用粒子群优化方法。从空间选择的结果中获得通道,然后可以使用 PSO 对其进行优化,以获得最优的活动通道并提高这些通道的准确性。测试结果表明,使用5个数据集,通道选择后脑电通道优化准确率最高可达100%。每个数据集包含 6 个训练数据(3 个婴儿和 3 个青少年)和 4 个测试数据(2 个婴儿和 2 个青少年)。获取的通道数也由原来的23个通道减少为最优的7个活跃通道。关键词:EEG、癫痫、K-NN、空间选择、PSO。摘要 脑电图(EEG)是一种由多个通道组成的、用于记录一定时间段内脑电波活动的工具。脑电图可用于诊断癫痫。可以通过使用空间选择 (SS) 和粒子群优化 (PSO) 方法优化 EEG 信号上的通道选择来分析癫痫 EEG 通道。在这个最终项目中,我们创建了一个系统来选择癫痫脑电图通道并优化这些通道。在选择和优化渠道之前,使用K最近邻(K-NN)进行分类,从作为渠道选择和优化系统输入的数据中获取最佳K值。癫痫脑电通道选择采用空间选择方法,优化过程采用粒子群优化方法。从空间选择的结果中,我们得到了通道,然后可以使用 PSO 进行优化,以获得最优的活动通道并提高这些通道的准确性。测试结果表明,使用5个数据集,通道选择后脑电通道优化准确率最高可达100%。每个数据集包含 6 个训练数据(3 个婴儿和 3 个青少年)和 4 个测试数据(2 个婴儿和 2 个青少年)。获得的通道数也由原来的23个通道减少为最优的7个活跃通道。关键词:EEG、癫痫、K-NN、空间选择、PSO。 1. 简介
使用流行的脑机接口 (BCI) 分析信号和大脑活动行为是一个非常当前的课题,许多研究人员经常从各个方面进行研究。这种比较在研究人机环境系统中的信息和信号流时特别有用,特别是在交通科学领域。本文介绍了使用基于虚拟现实技术的专有模拟器对驾驶员行为进行的初步研究的结果。该研究使用研究人类思维及其特定区域对给定环境因素作出反应而发出的信号的技术。提出了一种基于虚拟现实的解决方案,限制了现实世界发出的外部刺激,并对获得的数据进行了计算分析。研究重点是交通状况及其对受试者的影响。测试由不同年龄段的代表参加,有驾照的和没有驾照的都有。本研究展示了我们设计和建造的 VR 技术研究台的原始功能模型。在 VR 条件下进行测试可以限制不良外部刺激的影响,这些刺激可能会扭曲读数结果。同时,它增加了可以模拟的道路事件范围,而不会给参与者带来任何风险。在所介绍的研究中,BCI 用于评估驾驶员的行为,从而可以记录受检者的选定脑电波活动。脑电图 (EEG) 用于研究大脑活动及其对来自虚拟现实创建的环境的刺激的反应。由于使用放置在头骨选定区域皮肤上的电极,因此可以检测电活动。介绍了用于信号和信息流模拟测试的专有测试台的结构,该测试台允许选择测量信号和参数记录方法。这项研究的一个重要部分是展示在对汽车驾驶员行为进行实际研究过程中获得的初步研究结果。
由于眼球运动发出的电信号与传感器距离很近,且出现频率很高,因此会在脑电图信号上产生非常强烈的伪影。在检测脑电图波形中的眨眼伪影以进一步去除和净化信号方面,文献中提出了多种策略。最常用的方法需要使用大量电极、复杂的设备来采样和处理数据。这项工作的目标是创建一种可靠且独立于用户的算法,用于使用 CNN(卷积神经网络)检测和去除脑电图信号中的眨眼。为了进行训练和验证,使用了三组公共脑电图数据。这三组数据都包含在招募的受试者执行指定任务时获得的样本,这些任务包括在特定时刻自愿眨眼、观看视频和阅读文章。本研究中使用的模型能够全面理解所有将普通脑电图信号与受眨眼伪影污染的信号区分开来的特征,而不会被仅在信号被记录的情况下出现的特定特征过度拟合。
脑部计算机界面(BCI)提供了一种与计算机通信的秘密和非语言方式。bcis在包括辅助技术和情感监测在内的应用中具有巨大的潜力[1]。脑电图(EEG)由于其流动性,低成本和与认知功能的相关性[2,3]已成为BCI设计的人们选择。先前的研究表明,使用视觉或听觉刺激在建立基于脑电图的BCI系统方面取得了巨大成功。Chen等。 [4]使用流动对象设计了高通量视觉BCI系统。 当用户专注于其中一个时,EEG信号中将出现一种称为稳态视觉诱发电位(SSVEP)的神经特征。 但是,SSVEP需要稳定的视线,这可能是由于永久性或处境障碍而无法获得的(例如,在驾驶时)。 作为一种替代解决方案,研究人员将类似的想法应用于设计听觉BCI系统,在该系统中,向用户提供了以不同频率调制的多个纯音流。 参加流的调节频率可能会导致强大的EEG组件称为听觉稳态响应(ASSR)[5]。 SSVEP或ASSR范式的一个主要缺点是使用易流对象或调制纯音,这可能会导致用户疲劳。 最近的研究努力使用更自然而宜人的刺激来改善BCI系统的用户友好性。 Huang等。 [6]在其BCI设计中使用了滴滴声音,为用户创建了轻松的听觉场景。 An等。 [7]设计Chen等。[4]使用流动对象设计了高通量视觉BCI系统。当用户专注于其中一个时,EEG信号中将出现一种称为稳态视觉诱发电位(SSVEP)的神经特征。但是,SSVEP需要稳定的视线,这可能是由于永久性或处境障碍而无法获得的(例如,在驾驶时)。作为一种替代解决方案,研究人员将类似的想法应用于设计听觉BCI系统,在该系统中,向用户提供了以不同频率调制的多个纯音流。参加流的调节频率可能会导致强大的EEG组件称为听觉稳态响应(ASSR)[5]。SSVEP或ASSR范式的一个主要缺点是使用易流对象或调制纯音,这可能会导致用户疲劳。最近的研究努力使用更自然而宜人的刺激来改善BCI系统的用户友好性。Huang等。 [6]在其BCI设计中使用了滴滴声音,为用户创建了轻松的听觉场景。 An等。 [7]设计Huang等。[6]在其BCI设计中使用了滴滴声音,为用户创建了轻松的听觉场景。An等。[7]设计
我们研究了Su-Schrieffer-Heeger模型的断开纠缠熵S D。s d是连接和断开的两分纠缠连接的结合,可消除所有面积和批量法贡献,因此仅对在基态歧管中存储的非本地纠缠敏感。使用分析和数值计算,我们表明s d的行为就像拓扑不变,即,它分别在拓扑琐事和非平凡的阶段中量化为0或2log(2)。这些结果也存在于存在对称性疾病的情况下。在将两个阶段分开的二阶相变处,S d显示了类似于常规顺序参数的规模缩放行为,这使我们能够计算纠缠关键指数。为了证实S D的量化值的拓扑来源,我们显示了后者在以量子淬灭的形式应用单一时间演变后如何保持量化,这是与粒子孔对称性相关的拓扑不变的特征。
神经系统的整合作用,描述了突触和运动皮层 1913 年 - 埃德加·道格拉斯·阿德里安 (Edgar Douglas Adrian):神经中的全或无原则 1929 年 - 汉斯·伯杰 (Hans Berger):第一个人类脑电图 1932 年 - 扬·弗里德里希·滕尼斯 (Jan Friedrich Toennies):多通道墨水书写脑电图机 1932 年 - ED Adrian 和 C.S Sherrington 因在功能方面的工作获得诺贝尔奖