尖峰神经网络(SNNS)代表了向更有能力和生物学上合理的计算模型转变的范式的最前沿。作为第三代神经网络技术,通过模拟生物神经加工的事件驱动的特征,SNN是传统机器智能系统的有前途的替代方案(Maass,1997)。SNN的吸引力是多方面的,它们的能力不仅可以在较低的功耗下运行,还可以以紧密反映大脑时空动态的方式进行计算(Roy等,2019)。SNN的基于尖峰的通信协议特别适合稀疏和异步计算,使其非常适合在神经形态芯片上部署。这些芯片旨在模仿大脑的神经结构,利用SNN的固有稀疏激活模式实现了显着的能量效率改善(Li等,2024; Frenkel等,2023; Merolla et al。; Merolla et al。,2014; Davies et al。,2018; davies et al。,2018; pei; pei et al an al et al et al。
了解当前和未来的作物需求对于提高农业生产力和管理长期水资源在不断变化的气候下至关重要。这项研究旨在估计在不同的水管理实践和气候变化方案下,作物用水需求将如何变化。使用灌溉决策工具的现场实验是在2016年和2017年在埃塞俄比亚Lemo进行的。农作物和水管理数据是在白菜和胡萝卜生产上收集的。现场数据用于估计作物系数(KC),并将结果与模拟的KC与农业政策环境扩展器(APEX)模型进行了比较。在顶点中使用了预测的未来气候数据来评估气候变化对未来作物水需求和KC的影响。现场数据分析表明,平均而言,农民传统实践(FTP)治疗比润湿前探测器(WFD)处理更多的水。使用土壤水平衡法,卷心菜的初始,中和晚期两种处理的KC值的平均值分别为0.71、1.21和0.8,胡萝卜分别为0.69、1.27和0.86。顶端模拟的KC捕获了FAO KC模式,其测定系数(R-square)在0.5到0.74之间。最高模拟和土壤水平估计的KC还表明,卷心菜的R平方与R平方的关系很强,而胡萝卜的含量在0.5到0.75之间,0.66和0.96。预计的气候变化分析表明,由于温度升高,预计将来的作物水需求将在未来增加。在气候变化方案下,与基线期相比,2025年,2055年和2085年的生长季节潜在蒸散量将在2025年,2055年和2085年增加2.5%,5.1和6.0%。模拟的KC表示2085年的变化系数较高,卷心菜为19%,胡萝卜为24%,而2025个时期模拟的KC表示变异系数最小(分别为16%和21%的卷心菜和胡萝卜)。该研究表明,当前使用可用水资源的灌溉计划应考虑到该地区较高的农作物水需求,以减少缺水的风险。
在这里,我们引入了一种改进的后处理方法T-MSD,旨在解决罕见事件对相关数据的影响,并增强估计扩散系数的统计可靠性。此方法包括两个部分:时间平均的MSD分析和Block JackKnife(BJ)重采样。使用深层势分子动力学(DPMD)模拟,我们证明了时间平均的MSD有效地减少了数据波动并实现了时间平移不变性,从而得出了扩散系数的更强大的估计值。据我们所知,尽管该方法已用于分析生物学和化学领域中的单个粒子跟踪[28,29],但它很少在固态离子学中应用。此外,BJ重采样通过明确考虑
标题:在1.5T MR-LINAC平台上对头颈癌的显而易见的扩散系数的回波平面成像的重新延伸系数的重现:使用QIBA计量学的技术验证作者:Brigid A. McDonald 1,Dina El-Habashy 1,Renjie He 1,Sammir 1,Sam Mir Bir 1,2 Mohamed 1, 3 , Sara Ahmed 1 , Yao Ding 4 , Jihong Wang 4 , Stephen Y. Lai 5 , Alex Dresner 6 , John Christodouleas 7 , Clifton D. Fuller 1 Affiliations: 1 The University of Texas MD Anderson Cancer Center, Department of Radiation Oncology, Houston, TX, USA 2 UT MD Anderson Cancer Center UTHealth Houston Graduate School of Biomedical Sciences, Houston,美国德克萨斯州3贝勒医学院,放射肿瘤学系,美国德克萨斯州休斯敦4 4美国德克萨斯州安德森大学癌症中心,放射物理系,美国德克萨斯州休斯顿,美国5号,美国德克萨斯州癌症中心,德克萨斯州癌症中心,德克萨斯州休斯敦,德克萨斯州休斯敦,美国德克萨斯州休斯敦,美国6美国菲利普斯医疗保健MR on Ceport,美国埃尔克斯郡,美国7月,美国埃尔克斯郡。目的:为了检测放射治疗期间的明显扩散系数(ADC)值的变化,用于生物图像引导的自适应放射治疗,必须表征ADC的变异性。我们评估了1.5T MR-LINAC上头颈癌中ADC值的可重复性。方法:39例头颈癌患者(36例原发性肿瘤,55个淋巴结)在1.5T MR-LINAC上在辐射疗法开始之前的两个时间点上以回声 - 平面成像扩散加权MRI成像。为每个病变测量平均值和中位ADC值和体积。绝对性和可重复性系数(RC)。线性回归分析和F检验,以确定病变体积或扫描之间的时间是否影响可重复性。Results: For primary tumors & lymph nodes: mean ADC, median ADC, and volume were 1.27 ± 0.33 mm 2 /s & 1.17 ± 0.34 mm 2 /s, 1.25 ± 0.35 & 1.16 ± 0.37 mm 2 /s, and 8.8 ± 12.3 cm 3 & 6.5 ± 7.2 cm 3 , respectively.对于肿瘤和节点,平均ADC的RC值为0.355 mm 2 /s&0.355 mm 2 /s,%RC值为29.1%和31.1%;中值ADC非常相似。可重现性与体积或扫描间隔没有显着相关,但是观察到较小体积的可重复性较差的趋势。结论:考虑到先前的报告,最佳%∆ ADC在头颈癌中的响应预测阈值约为15-30%,MR-LINAC上的这种序列具有可接受的可重复性来检测较大的ADC变化,但仍可能错过一些临床上显着的变化。
在这项工作中,合成了氧化石墨烯(GO)纳米颗粒并随后使用3-氨基丙基三甲氧基硅烷(APTMS)进行了修饰。Anderson型多氧碱[(C 4 H 9)4 N] 2 [CRMO 6 O 18(OH)6],然后将其固定在改良的石墨烯氧化石墨烯纳米颗粒的表面上。The obtained catalyst was characterized using Fourier-transform infrared spectroscopy (FT-IR), energy-dispersive X-ray spectroscopy (EDS), inductively coupled plasma (ICP), thermogravimetric analysis (TGA), scanning electron microscopy (SEM), Raman spectroscopy, and X-ray diffraction (XRD).在基于溶剂的条件下,评估了该可回收混合催化剂的催化性能在75°C下合成了苯咪唑衍生物。混合催化剂表现出易于分离,并且可以成功重复使用至少六次,而所需产品的产量仅略有降低。浸出和恢复测试以及FT-IR分析证实了催化活性物种的高稳定性和催化剂的异质性。
。cc-by-nc 4.0国际许可(未获得同行评审证明),他授予Biorxiv授予Biorxiv的许可,以永久显示预印本。这是该版本的版权持有人,该版本发布于2025年3月7日。 https://doi.org/10.1101/2025.03.03.03.03.641322 doi:Biorxiv Preprint
预印本(未通过同行评审认证)是作者/资助者。保留所有权利。未经许可就不允许重复使用。此版本的版权持有人于2025年2月14日发布。 https://doi.org/10.1101/2025.02.11.637773 doi:Biorxiv Preprint
(未通过同行评审认证)是作者/资助者。保留所有权利。未经许可就不允许重复使用。此预印本版的版权持有人于2025年3月1日发布。 https://doi.org/10.1101/2025.02.28.640804 doi:biorxiv preprint
早在2016年,USTC的研究人员实验表明,非局部性可以通过单粒子的情境性通过两粒子相关性产生,这些相关性不会违反任何贝尔的不平等,并产生了三维纠缠。在2020年,分别实现了通过11 km纤维的高维纠缠的32维量子纠缠和有效的分布,以奠定可伸缩量子网络的坚实基础。