量子网络节点之间的纠缠通常使用中间设备(例如预告站)作为资源来产生。当将量子网络扩展到许多节点时,每对节点都需要一个专用的中间设备,这会带来高成本。在这里,我们提出了一种经济高效的架构,通过称为纠缠生成交换机 (EGS) 的中央量子网络集线器连接许多量子网络节点。EGS 通过共享进行纠缠所需的资源,允许以固定的资源成本连接多个量子节点。我们提出了一种称为速率控制协议 (RCP) 的算法,该算法可以调节用户组之间对集线器资源访问的竞争水平。我们继续证明算法产生的速率的收敛定理。为了推导该算法,我们在网络效用最大化 (NUM) 框架下工作,并利用拉格朗日乘数和拉格朗日对偶理论。我们的 EGS 架构为开发与其他类型的量子网络集线器以及更复杂的系统模型兼容的控制架构奠定了基础。
摘要在2021年,美国能源部(DOE)开始了能源大地倡议,以在未来10年内加速可靠的清洁能源解决方案的突破。在2022年,美国能源部地热技术办公室(GTO)询问了国家可再生能源实验室(NREL),以为开发增强的地热系统(EGS)的能源地面靶标提供分析,该储层是人为的地下储层,这些储量从地球上从地球上提取电力的热能,以发电和/或热量或加热或加热应用。增强的地热射击分析基于2019年GTO报告Geovision中的技术假设:利用我们脚下的热量。对于Earthshot,我们根据最近的技术进步更新了一些技术成本和性能假设,并更新了EGS资源潜力,以包括更详细的分析。我们使用了更新的EGS供应成本曲线来预测使用能力扩展模型到2050年在美国部署的地热发电量。结果用于为EGS开发成本目标。2022年9月8日,宣布了增强的地热射击。其目标 - 将EG的成本降低90%,到2035年每兆瓦$ 45。本文总结了增强的地热拍摄中使用的成本和资源假设。它描述了区域能源部署系统(REEDS)容量扩展模型中使用的假设,以预测地热部署并讨论结果。1
• 企业总线接口组 (EBIG) 了解和应用消息传递规范 • POC:Shane Gardner 上尉,shane.gardner.1@spaceforce.mil • EGS 软件开发工具包和 NASA GMSEC API 促进信息交换 • POC:Shane Gardner 上尉,shane.gardner.1@spaceforce.mil • EGS 服务目录... 一个简单的基于 Web 的成熟服务列表,可供 MP 采用 • POC:Mike Owings 先生,NH-04,michael.owings@spaceforce.mil • 中继地面站建设 - 亚洲和意大利 • POC:Kevin Duffy 中尉,kevin.duffy.5@spaceforce.mil 和 Ryan McVay 上尉,ryan.mcvay.1@spaceforce.mil
摘要:基因本质是对生活和进化的全面理解至关重要的遗传概念。在过去十年中,已经使用不同的实验和计算方法确定了许多基本基因(例如),并且该信息已用于减少模型生物的基因组。越来越多的证据表明,重要性是取决于上下文的财产。由于它们在重要的生物学过程中的重要性,因此识别特定于上下文的EGS(CSEG)可以帮助识别新的潜在药理靶标并改善精确的治疗剂。由于提出的大多数计算程序旨在识别和预测EG忽略其上下文特异性,因此我们专注于这一方面,提供了用于识别CSEG的文献,数据和计算方法的理论和实验概述。为此,我们调整了现有的计算方法来利用特定的上下文(肾脏组织),并使用四种不同的鉴定方法提供的标签进行了四种不同的预测方法。从对获得的结果的分析中得出的考虑,也通过对不同组织环境的进一步实验进行了确认和验证,为读者提供了用于利用现有工具来实现CSEGS识别和预测的指南。
•启动高于MAT 1033C的数学序列将节省时间和选择空间; test for proper math level placement • To declare this major at UCF, students must complete MAC 2311, MAC 2312, PHY 2048C and CHM 1045C with a “C” or better • Additional CPPs and UCF requirements offered at Valencia: COP 2220C, EGN 1007C, EGN 2312, EGN 2322, EGN 2440, EGS 1006C, EGS 2004C, and EGS 2373 –课程取决于UCF工程专业化; the Material Science specialization also requires CHM 1046C – see an advisor to create your individualized plan for Valencia course work to best prepare for your UCF specialization https://valenciacollege.edu/academics/programs/as-degree/documents/valencia_ucf_stem_engineering.pdf • Refer to the Engineering Advising Guide for a program-specific student checklist/resources valenciacollege.edu/engineering-guide•由于您需要参加的先决条件课程的顺序,本计划的所有学期都不会使您有资格获得全日制招生
摘要 量子网络节点之间的纠缠通常使用中间设备(例如预告站)作为资源产生。当将量子网络扩展到许多节点时,每对节点都需要一个专用的中间设备,这会带来高成本。在这里,我们提出了一种经济高效的架构,通过称为纠缠生成交换机 (EGS) 的中央量子网络集线器连接许多量子网络节点。EGS 通过共享进行纠缠所需的资源,允许以固定的资源成本连接多个量子节点。我们提出了一种称为速率控制协议的算法,它可以调节用户组之间对集线器资源访问权的竞争水平。我们继续证明算法产生的速率的收敛定理。为了推导该算法,我们在网络效用最大化的框架下工作,并利用拉格朗日乘数和拉格朗日对偶理论。我们的 EGS 架构为开发与其他类型的量子网络集线器以及更复杂的系统模型兼容的控制架构奠定了基础。
正如我们在第1.1.1节中讨论的那样,大多数集成电路都是用硅制造的。因此,我们的重点是制造硅设备。为制造设备,硅必须以结晶形式为没有任何缺陷。它必须非常纯净。仅允许PPB的命令(仅零件十亿)的杂质。 2.1.1硅硅的纯化在自然界中大量可用于Sio 2(Sand)的形式,该形式形成了地壳的20%。 冶金级硅(MGS)是通过在碳弧炉中还原(以岩石形式可用的Sio 2的晶体形式)获得的。 MGS电子级硅(EGS)的是通过蒸馏过程获得的。 例如,本质上是多晶。 它由1 ppb的杂质组成。 (每10亿或10 9硅原子1不良杂质)。 2.1.2晶体生长仅允许PPB的命令(仅零件十亿)的杂质。2.1.1硅硅的纯化在自然界中大量可用于Sio 2(Sand)的形式,该形式形成了地壳的20%。冶金级硅(MGS)是通过在碳弧炉中还原(以岩石形式可用的Sio 2的晶体形式)获得的。是通过蒸馏过程获得的。例如,本质上是多晶。它由1 ppb的杂质组成。(每10亿或10 9硅原子1不良杂质)。2.1.2晶体生长
抽象的新方法和改进的方法可以从热干岩中提取能量,如果成功的话,它们可以从以前未开发的资源中解锁能源生产的Terawatt。三种有希望的方法包括增强的地热系统(EGS),高级地热系统(AGS)和笼中的地球热系统(CGS)。EGS使用粒子支撑的液压刺激裂缝通过低渗透率岩石传达流体以提取热量。ags使用闭环流过一系列深井,以提取热量,而无需液压刺激。CGS使用边界井来包含高压支撑的液压骨折,同时最大程度地减少地震风险。但是,这些方法中的每一种都有其自身的挑战。例如,由于支撑剂降解和快速的热短路而导致的产量较低。ags可能会出现井钻孔和较低的热量提取的极端资本成本。CGS冒着未经证实的笼子概念和极端抽水成本的风险。在这里,我们试图在包括天然裂缝在内的超高不确定性绿色场景中预测每种方法的性能。我们的目标地点是科罗拉多州柯林斯堡附近的Wattenberg地热异常。使用我们的开源地热设计工具(GEODT)仅使用基本输入数据,我们为将来的6公里深井完成了随机功率和经济风险评估。在传导为主的瓦滕贝格异常中,我们预计底部孔温度在220至300°C的范围内。地下应力和断层条件未知。岩石性能除了地下室可能由火成岩或变质岩组成的地下室之外。我们的分析预测,具有五口井(即XGS)的“ X” pattern的CGS拥有99至220美元/MWH的经济热量产量的最大前景,其次是87至2200美元/MWH的3井EGS,然后是410至860至860 $ usd/mwh。
地热能(“我们脚下的热量”)长期以来一直被誉为几乎无法取之不尽的大量基本电源来源(Tester等,2007),但在全球能量组合中仍然是可再生能源的利基提供者。最近,地热能提取已成为具有巨大潜力的重要清洁能源。这在很大程度上是由于最近从热,干岩(HDR)提取地热的概念的爆炸驱动的,克服了对稀有和地理上稀疏的水热资源的需求,并为“任何地方的地热”创造了希望。已经提出了几种概念来提取HDR的能量。宽松地,这些概念属于“增强(或工程)地热系统”(例如)的权限,尽管某些文献将诸如闭环地热系统(Beckers等,2022)和连接的多边系统(Holmes等,2021)(创建“热交所”(Heateanger Asshep As Sparted Geother)(ag as and Geotherm)(Hymes et and System)(Holmes et al,2021)分类(Beckers等,2022)。在这种情况下,经典EG是指一个概念,其中两个(或更多)井是通过资源中的断裂网络连接的。连接裂缝网络是通过液压压裂和/或水力剪切(在资源中重新激活现有的天然断裂)创建的。在配对井之间创建了连接的断裂网络后,就可以通过喷油器孔注入工作流体。流体流过资源中的连接网络,提取热量,然后通过配对生产商产生。Fervo(Norbeck等,2023)和犹他州Forge(Allis and Moore,2019年)的最新成功使EGS更接近现实。语义,自1970年代开始在芬顿山(Fenton Hill)开始以来,经典的EGS方法历史上一直受到最大的关注和资金(Brown等,2012)。这两个示范项目均处于200°C左右的温度下。最近,对这些成功在Superhot Rock(SHR)中的成功兴趣,资源温度超过375°C,已经蒸蒸日上,这证明了美国能源部关于下一代地热的商业升降机报告的最新途径(2024)。同时,创新在AGS地区继续进行,Eavor(Holmes等,2021)和XG(Moncarz和Suryanarayana,2022年)取得了进展。Khodayar和Björnsson(2024)对已实施或正在开发的各种常规(水热)和非常规(例如,AGS,地热存储)系统提供了出色的评论。