摘要。朦胧的图像带来了一个具有挑战性的问题,由于信息丢失和颜色失真而遭受。当前的基于深度学习的去悬式方法通过增加网络深度来增强性能,但会导致大量参数开销。同时,标准卷积层集中在低频细节上,通常会说出高频信息,这阻碍了模糊图像中提出的先前信息的有效利用。在本文中,我们提出了TCL-NET,这是一个轻巧的飞行网络,该网络强调了频域特征。我们的网络首先包含一个用于提取高频和低频内形式的所谓层,该层是针对原始模糊图像的快速变压器专门设计的。同时,我们设计了一个频率域信息融合模块,该模块将高频和低频信息与后续卷积层的卷积网络作品集成在一起。此外,为了更好地利用原始图像的空间信息,我们引入了一个多角度注意模块。使用上述设计,我们的网络以仅0.48MB的总参数大小实现了出色的性能,与其他最先进的轻量级网络相比,参数的数量级降低了。
栽培大豆 ( Glycine max (L.) Merrill ) 是由野生大豆 ( Glycine soja ) 驯化而来,其种子比野生大豆更重,含油量更高。在本研究中,我们利用全基因组关联研究 (GWAS) 鉴定了一个与 SW 相关的新型候选基因。连续三年通过 GWAS 分析检测到候选基因 GmWRI14-like。通过构建过表达 GmWRI14-like 基因的转基因大豆和 gmwri14-like 大豆突变体,我们发现 GmWRI14-like 的过表达增加了 SW 和增加了总脂肪酸含量。然后我们利用 RNA-seq 和 qRT-PCR 鉴定了 GmWRI14-like 直接或间接调控的靶基因。过表达GmWRI14-like的转基因大豆比非转基因大豆株系表现出GmCYP78A50和GmCYP78A69的积累增加。有趣的是,我们还利用酵母双杂交和双分子荧光互补技术发现GmWRI14-like蛋白可以与GmCYP78A69/GmCYP78A50相互作用。我们的研究结果不仅揭示了栽培大豆SW的遗传结构,而且为改良大豆SW和含油量奠定了理论基础。
目的:这项研究的目的是调查马来西亚人中对Covid-19的知识,疫苗偏好和恐惧。材料和方法:这项在线问卷调查是从2021年9月6日至2021年11月12日通过成人马来西亚人的Google表格进行的。为了收集数据,将经过试验的经过验证的问卷调查给387个样本。由参与者的社会人口统计学特征,有关信息来源的COVID-19疫苗的知识,参与者的特定疫苗偏好,具有理由,疫苗接种状态和COVID-19的恐惧的调查表。结果和讨论:参与者对Covid-19疫苗有良好的了解。总共275(71%)参与者表现出对特定疫苗的偏爱;辉瑞-biontech是最优选的(61.5%)疫苗。偏爱的主要原因是有效性(56.4%)。疫苗优先组的参与者获得的知识评分(7.38/8)比非偏爱(7.28/8)的知识评分更高。总共376名(97%)的受访者接种疫苗,其中250名(66.5%)接受了首选疫苗,而22(5.85%)未获得挑选,而休息却没有偏爱。在11名未接种疫苗的参与者中,有3名拒绝接种疫苗,以提供非脱颖而出的疫苗。与非接种疫苗的组相比,疫苗接种组中对共vid-19分数的恐惧更高(21.34/35)(19.09/35),尽管没有观察到显着差异。结论:大多数马来西亚人都对COVID-19疫苗接种知识渊博,接受了疫苗优先和疫苗接种。疫苗偏爱的参与者比没有明显差异的非偏爱更具知识渊博。在非接种疫苗的参与者中,有27%(3/11)拒绝提供的疫苗接种,如提供的非偏爱疫苗。疫苗接种组对19009的恐惧比非接种疫苗的恐惧更多,而差异无关。提高意识是人们不愿意或犹豫接种疫苗所必需的。
就上述事项,NGT 先生于 2022 年 1 月 12 日通过命令成立了一个由八名成员组成的联合委员会,成员包括环境部和气候变化部、那格浦尔地区办事处、CPCB、浦那地区办事处、MCGM 专员、孟买东郊地区收税员、该地区的 DCP(由孟买警察局长指定)、马哈拉施特拉邦首席野生动物看守人、马哈拉施特拉邦环境主任和州 PCB。负责协调和合规的联络机构是州 PCB 和州湿地管理局。申请中的不满针对的是孟买东郊 Powai 湖的污染以及当局未能采取补救措施。申请人提到污染源是废水和污水的排放、非法填海建设和倾倒垃圾。NGT 先生于 2022 年 1 月 12 日通过的上述命令的副本见附件 I。此后,法庭根据各被告机构的诉状审议了此事,法庭于 2022 年 1 月 12 日下达命令,指出尽管已采取某些举措来恢复/复兴湖泊并防止破坏环境,但迄今为止采取的措施还不够,预期结果尚未实现。还提到,国家当局和民间社会需要继续持续努力,并保持警惕。此外,在必要时,通过所有法定监管机构的协调努力,采取强制措施来执行环境规范。尊敬的 NGT 对上述联合委员会的操作指示简要如下:
糖尿病是全球最重要的公共卫生问题之一,对全球公共卫生和社会经济发展造成了沉重的负担。尽管某些国家的发病率已经开始降低,但近几十年来,其他发达国家和发展中国家的糖尿病患病率也有所增加(1)。2型糖尿病(T2D)约占糖尿病病例的90%(2),根据世界卫生组织的说法,即使在年轻人中,被诊断为T2D的人数也在增加(2)。T2D的发展主要是由不健康的生活方式以及环境和遗传因素的相互作用引起的。尽管其中一些因素受到个人控制,例如生活方式,但其他因素却没有,例如年龄,性别和遗传学的增加。饮食也归因于T2D的风险(3,4)。在许多前瞻性研究中已经确认了这种关联(5-8)。此外,T2D是一种越来越普遍的代谢疾病,引起严重的微血管并发症,即心血管疾病(CVD),视网膜病变,神经病和肾病(3,9)。此外,据报道,减肥或生活方式改良的有益影响可以预防,延迟和减少疾病的发生率(2,10)。因此,对整体饮食模式(习惯食品和营养摄入量)的有效估计已成为研究饮食与健康状况之间关系的基本方面(8)。一般饮食习惯可以提供超出营养和单一食物作用的见解(2,11)。基于食品和食物组的RF,MDS和AMDS某些指数基于国家营养建议和国家饮食指南,这些指南评估了整体营养模式,包括健康饮食指数,替代健康饮食指数,健康饮食指标,推荐食品评分(RFS),饮食质量指数,饮食质量指数,饮食质量质量评分,地中海饮食评分(MDS)以及替代地中海饮食(MDS)和替代饮食(AMDS)。
摘要。针对 COVID-19 等流行病的生物医学仪器和管理平台正在迅速采用支持物联网的医疗设备 (IoMT)。量子密钥分发 (QKD) 也被认为是应用顶级互联网战略的基本原理、工具、方法和思想,特别是在医疗保健和医疗领域。然而,使用 QKD 的高效端到端验证系统解决了协议的安全问题并简化了整个流程。因此,尽管成本可能会增加和出现错误的可能性,但必须实施一种新系统,使数据传输顺畅而不损害其完整性。当存在额外的传感器和设备并且需要更多能量来处理它们时,可以使用更有效的算法来降低功耗。
摘要古老的茶厂是珍贵的自然资源和茶叶遗传多样性的来源,对于研究植物的进化机制,多样化和驯化而具有巨大的价值。古老的茶叶植物之间的总体遗传多样性以及自然选择期间发生的遗传变化仍然很少理解。在这里,我们报告了由120个古代茶厂组成的八个不同群体的基因组重新陈述:来自吉州省的六组和云南省的两个团体。基于8,082,370个鉴定的高质量SNP,我们构建了系统发育关系,评估了种群结构并进行了全基因组关联研究(GWAS)。我们的系统发育分析表明,120个古老的茶厂主要聚集在三组和五个单个分支中,这与主成分分析(PCA)的结果一致。基于遗传结构分析,将古老的茶水进一步分为七个亚群。此外,发现古老的茶叶植物的变化不会因外部自然环境或人工育种的压力而降低(非同义/同义词= 1.05)。通过整合GWA,选择信号和基因功能预测,四个候选基因与三个叶片性状显着相关,并且两个候选基因与植物类型显着相关。这些候选基因可用于进一步的功能表征和茶植物的遗传改善。
模具行业不断要求先进的技术来提高模具在其生命周期内的性能。直接金属沉积 (DMD) 为模具翻新提供了关键机会。然而,通过 DMD 的典型刀具路径由交替的平滑段和尖角组成。在这里,能量密度和粉末数量的波动通常会导致工具恢复部分出现严重的几何偏差。这项工作提出了一种基于机器学习的新型预测方法,该方法使用与工艺参数和执行的几何形状相关的特征来表征路径。该方法的优势已在刀具路径上得到验证,刀具路径通常表征工具翻新过程。© 2022 作者。由 Elsevier Ltd 代表 CIRP 出版。这是一篇根据 CC BY 许可开放获取的文章(http://creativecommons.org/licenses/by/4.0/)
定向金属沉积 (DMD) 是一种很有前途的金属增材制造技术,其中零件是通过使用沿预定义轨迹移动的激光束融合注入的金属粉末颗粒来制造的。刀具路径通常包括曲线或边缘部分,机器轴需要相应地减速和加速。因此,局部施加的激光能量和粉末密度在沉积过程中会发生变化,导致局部过度沉积和过热。这些偏差还受到刀具路径几何形状和工艺持续时间的影响:先前的沉积可能会在时间和空间上影响相近的刀具路径段,导致局部热量积聚,并形成与使用相同参数沉积的其他段中产生的轮廓和微观结构不同的轮廓和微观结构,这是由于几何形状和温度相关的集水轮廓所致。为了防止这些现象,需要轻量级和可扩展的模型来预测可变刀具路径的工艺行为。在本文中,我们提出了一种基于人工智能的方法来处理 Inconel 718 的工艺复杂性和多种刀具路径变化。考虑到先前定义的刀具路径,使用人工神经网络 (ANN) 来预测沉积高度。通过打印包含多个曲率和几何形状的随机刀具路径,生成了训练数据。基于训练后的模型,可以成功预测整个刀具路径的显著局部几何偏差,并且可以通过相应地调整工艺参数来预测。