摘要 激光扫描是获取地形及其上物体的高精度最新空间数据的方法之一。LIDAR(光探测和测距)是最现代、发展最快的技术之一,它揭示了迄今为止传统方式无法实现的测量新功能。本出版物的目的是展示使用机载激光扫描数据进行能源网络测量和可视化的可能性,以及使用 TerraSolid 软件包识别现有网络对周围环境构成的危险。根据从机载激光扫描获得的两个不同点云,对电力线的两个独立部分进行了测量。第一个的密度为 16 点/平方米,而另一个的密度为 22 点/平方米。该项目是在 MicroStation V8i 软件环境中创建的,使用了芬兰 TerraSolid 公司的 TerraScan 和 TerraModeler 等特殊叠加层。使用不同密度的测试云旨在指示点云的最佳密度,从而允许基于机载激光扫描数据对能源网络进行调查和可视化。该出版物通过特定示例介绍了电力线矢量化和可视化的过程以及对距离电力线危险距离内的物体的检测。还证实了使用符合行业要求的应用激光雷达数据进行电力线调查的可能性。
硅纳米结构(如纳米式阵列)在各种应用中具有巨大的潜力,例如光伏电池[1],传感器[2],信息存储[3],仅举几例。纳米果(NNS)被定义为具有较高纵横比的纳米材料。那些属于两个主要类别:单针,外部操纵以接触细胞和组织(近场显微镜(AFM),微型操纵器)或支持基板支撑的垂直高纵横比纳米结构的阵列。前者涵盖了各种纳米结构,包括纳米线,纳米柱,多孔纳米酮,纳米管和纳米膜。各种材料/尺寸/形状使每种类型的NN具有不同的特定感应需求的特性,也就是说,在机械生物学,纳米电机生理学,光遗传学,纳米遗传学,转染/载体化/矢量化(药物输送)中,各种应用[4] [4]。
The objective of this study was to develop hybrid nanoparticles (HNCs) from two monomers, methyl methacrylate (MMA) and butylacrylate (BA), using miniemulsion polymerization method in the presence of Algerian Montmorillonite (AMMT), and different types of surfactants, such as the double-chain cationic didodecyldimethylammonium bromide (DDAB),undecafluoro n-戊酰十氧基乙烯醚(C 5 F 11(EO)10)和混合表面活性剂系统(FSO-100/DDAB)。少见研究,尤其是关于获得去角质杂交纳米颗粒的可能性。在这项研究中,优化了聚合反应的几个参数,并允许得出结论: MMA-CO BA,c)用于采条微型乳化聚合,修饰的MMT充当表面活性剂,并构成了粘土交给粘土的交流,并稳定了微型乳化剂的粒子 - 溶剂界面。粘土的百分比越高,较不稳定的是微型乳液,而其多分散性越高,d)最稳定的纳米颗粒是用AMMT-HTA +重量为0.5%获得的,这是去角质纳米复合材料的特征。添加2%的N六烷烷(N-HD)导致尺寸降低了50%,表明该化合物在微乳液中稳定颗粒的有效性。
“水热法制备新材料”是《材料》杂志的一期全新开放特刊,旨在发表原创研究和评论论文,介绍水热合成新材料研究的最新进展。本特刊还希望启发不同的视角,使水热技术(如材料的连续生产、水热回收技术以及水热合成的建模和模拟)更加经济。水热法仍然是一种“黑箱”技术,基于通过控制热力学(温度、压力、溶液的pH值和前体的化学成分)和非热力学变量直接从水溶液中结晶材料。基于热液独特的压力-温度相互作用,通过控制成核和生长的速率和均匀性,可以精确设计所得材料的尺寸、形貌、化学计量、多态性、亚稳态和聚集控制。此外,通过对热液体系的热力学建模,对水介质的溶液热力学以及对相平衡和结晶机理的预测,决定了制备新材料的能力。热液研究由地质学家在十九世纪中叶推广,主要集中在自然热液现象的实验室模拟。当代先进科学技术的不断发展,导致热液技术的多样性和复杂性不断提高,涵盖了多个跨学科的科学分支,而不仅限于晶体生长[1]。因此,水热法可以被视为重要技术的一部分,例如纳米技术和先进材料技术,它们都是一门高度跨学科的学科,也是物理学家、化学家、陶瓷学家、材料科学家和工程师所使用的一项技术。本期特刊的研究重点是“利用水热法制备新材料”,包括但不限于以下主题:水热合成、亚稳相、超临界水热生长、连续流水热合成、水热合成的建模和模拟、水热碳化和水热回收技术。
摘要。本文提出了一种经济高效的工艺流程设计与开发,用于研究 GaN 微管的挠曲电性能,微管直径为 2 - 5 μm,微管壁厚为 50 nm。研究了设计以及电化学蚀刻参数(施加电压、阳极氧化持续时间)对获得的通道尺寸的影响。所提出的技术路线意味着在高蚀刻速率下在环保电解质中对 n-InP 半导体晶体进行电化学蚀刻。通过实验优化了工艺流程。建议引入一个垂直通道,微管将放置在该通道中,以便在测量过程中在平台上达到更高的稳定性。
摘要:碳浸渍(CM)Vinifientation是一种非常传统的方法,它允许在不大量设备投资的情况下节省能源,获得高质量的葡萄酒。由于其特殊性,CM酿酒意味着更高的微生物改变风险。这项工作研究了细菌种群沿碳浸渍葡萄酒的演变,随着有或没有酵母接种的阐述。以相同的方式研究了两种酵母菌接种的策略:“ Pied de Cuve”和活跃的干酵母(ADY)种子。为此,分析了三个条件:自发发酵(无接种),“ pied de Cuve”技术和ADY接种。对于每种条件,比较了两种酿酒方法:碳浸渍和命运和压碎的标准方法(DC)。在不同的发酵阶段遵循细菌进化(乳酸和乙酸细菌)。最后,分析了获得的葡萄酒(pH和挥发性酸度)。在CM产生的非接种葡萄酒中,观察到细菌种群的高发育(乙酸细菌的计数左右,约4.3 log cfu/ml),并且葡萄酒的葡萄酒值为挥发性酸度的高值(> 1.5 g/l),在接种的葡萄酸盐和0.5元素中没有发生。挥发性酸度)。因此,作为ADY种子的“ pied de Cuve”的控制似乎是避免CM vini拟合细菌改变的有效工具。
出版政策中规定了重复使用此版本手稿的条款和条件。使用受版权保护的作品需要获得权利人(作者或出版商)的同意。根据知识共享许可或出版商定制许可提供的作品可根据其中所含的条款和条件使用。请参阅编辑网站以获取更多信息和条款和条件。此项目是从 IRIS Università Politecnica delle Marche(https://iris.univpm.it)下载的。引用时,请参考已发布的版本。
摘要 激光扫描是获取地形及其上物体的高精度最新空间数据的方法之一。激光雷达 (LIDAR) 是最现代、发展最快的技术之一,它揭示了迄今为止传统方式无法实现的测量新功能。本文旨在展示使用机载激光扫描数据进行能源网络测量和可视化的可能性,以及使用 TerraSolid 软件包识别现有网络对周围环境构成的危险。根据从机载激光扫描中获得的两种不同点云,对电力线的两个独立部分进行了测量。第一个点云的密度为 16 点/平方米,另一个点云的密度为 22 点/平方米。该项目是在 MicroStation V8i 软件环境中创建的,使用特殊叠加层——芬兰 TerraSolid 公司的 TerraScan 和 TerraModeler。使用不同密度的测试云旨在指示点云的最佳密度,从而允许基于机载激光扫描数据对能源网络进行调查和可视化。该出版物通过特定示例介绍了电力线矢量化和可视化的过程以及在危险距离内检测物体的过程。还证实了使用满足行业要求的应用激光雷达数据进行电力线调查的可能性。
表1:所选作者的文献计量指标。 div>(Source: Own elaboration from WOS data, as of June 2023) ....................... 20 Table 2: Main bibliometric indicators of the magazines in which the selected articles have been published. div>(Source: Own elaboration from WOS data, as of June 2023) ....................................................................... 20 Table 3: Search results for the author “Francisco Juan Martínez Mojica”. div>(Source: Own elaboration from WOS data, as of June 2023) ..........................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................., div>(来源:截至2023年6月的WOS数据中的详细说明)......... 24表5:作者“ Emmanuelle Charpentier”的搜索结果。 div>(来源:截至2023年6月的WOS数据中的详细说明)......... 26表6:作者“ Feng Zhang”的搜索结果。 div>(Source: Own elaboration from WOS data, as of June 2023) ....................... 28 Table 7: Search results with partial equations of bioethical perspectives. div>(Source: Own elaboration from WOS data, as of June 2023) ........................................................................................... 30 Table 8: Search results with final equations of bioethical perspectives. div>(来源:截至2023年6月的WOS数据)....................................................................................................................................... .................................................................... div>(来源:截至2023年6月的WOS数据中的自己详细说明)
• 序列化产品/交付物 – 传统(设计、设施、设备等) • 周期性进展 – 敏捷(IT、开发、原型设计、调试等) • 功能服务(合同、工作量水平 (LOE) 管理、运营) • 混合 – 多种类型的混合(例如传统、LOE 管理和业务服务、敏捷 IT)