“海洋环境仍然被低估,尤其是开阔的海洋和深海。” - 2021年5月的葡萄牙代表“尽管科学同意需要30%的陆地和海洋区域保护,但一些研究汇总了这样的想法,即到2050年50%的保护可以保护海洋和陆地生物多样性,同时保存生态系统服务。” - 2021年5月的法国代表。上面的陈述是在《生物多样性公约》(CBD)的科学,技术和技术建议(SBSTTA-24)的第24届会议上(第1部分)的开放全体会议期间发表的。他们体现了许多代表所表达的观点,即:i)在CBD 2020后全球生物多样性框架(GBF)的早期草案中未能指定“海洋”生物多样性是不可接受的; ii)CBD应解决国家管辖区以外地区的海洋生物多样性(ABNJ); iii)优先考虑海洋保护区(MPA)的进一步扩展。作为研究人员自2008年以来研究CBD和其他国际组织中的海洋问题的研究人员,我们发现代表队伍呼吁更多地关注海洋生态系统,既值得关注又不令人惊讶。在本文中,我们呼吁在全球生物多样性保护的更广泛的领域中要求“更多的海洋”,并分析了如何随着时间的推移来实现全球海洋生物多样性保护的“领域”。这篇文章是从我们的工作中出现的,这是一项更大的研究合作的一部分,该协作研究了国际会议(如SBSTTA-24)在全球环境治理(GEG)中的作用。但是,我们描述的领域是部分的,反映了geg“包括在全球领域中塑造环境行动和成果的机构,过程,倡议,参与者和组织”(O'Neill等人,2013,443)。其特征是“不确定性和复杂性,跨生态和政策的多量表联系,跨发行区域的水平联系以及迅速发展的问题和制度计划”(Campbell等,2014a,3)。这些特征使GEG难以研究,但是国际会议是对GEG进行研究的一个地方(Brosius和Campbell,2010; MacDonald,2010; Campbell等,2014a),我们采用了人种学研究方法来支持它(Corson等,2014年; Gray等,202020202020)。使用我们所谓的协作事件人种志(CEE),我们已经在连续的国际会议上建立了对geg的了解,这些国际会议跨越了十五年(参见Corson等,2019)。在本文中,我们假设国际会议在GEG中的作用,并将注意力转向指定各种参与者在会议上的工作如何有助于确认全球海洋生物多样性保护领域。我们将其描述为“机构生活的公认领域”(Dimaggio and Powell,1983,148),并说明了它是如何由国际会议塑造的,而不是简单地揭示的。在描述和分析全球海洋生物多样性保护的“领域”时,我们没有“声称立即解释世界上的一切”(Tsing,2005年,IX-X)。民族志研究全球过程,其“有限的互连和重叠环境”(Amit,2000,6)总是一定是部分的。因此,我们描述的领域反映了我们在哪些国际会议以及要参加哪些问题以及我们的经验的选择(Corson等,2019)。
在上午11.00的部落事务部(MOTA)秘书主席下举行了一次会议。与科学技术部(DST)一起,审查了DST在各种方案下的分配,利用率,STC基金的物理进步,以及用于支持DST STC基金治疗镰状细胞病的研究。在附件中给出了参加会议的参与者的名单。2。在过去的4 - 5年中,科学技术部一直将总计划分配的4.3%分配为STC。他们今年已根据STC分配了1254.5亿卢比。秘书,部落事务观察到,在2020-21的RE和实际支出分配并没有达到目标。在当前财政年度,DST仅花费了12.08亿卢比。DST的Dutta博士告知,由于Covid大流行,DST在去年无法全部使用。
摘要Burckhardt Compression Holding AG总部位于温特图尔,是一家具有国际活跃的往复式压力机制造商,在其Laby®往复式压缩机中使用三件式活塞。由于其铸造设计,活塞的重量很高,这限制了活塞的大小,特别是对于大直径。因此,正在寻找解决方案在轻质设计中使用金属添加剂制造工艺制作活塞,以抵消这些挑战。在各个科学和工业领域应用的减轻体重的创新技术之一是激光直接金属沉积(DMD)。因此,一个项目是从Burckhardt压缩开始的,以降低质量,从而实现更高的工作速度。这项研究提供了一个工作流程,可通过直接金属沉积(DMD)制造1.4313的轻质活塞,直径约为342 mm,高度为140 mm。活塞的特征是不同的片段,这些片段在传统上和附加性制造中以克服机器限制。活塞皇冠被连接到添加剂制造的部分,并由CO 2激光焊接密封。降低DMD的激光功率可降低温度,因此,锰和硅的氧化和降低载气流量可提高堆积速率,并降低了湍流诱导的氧化。每层交替的进料方向提高了几何准确性,并避免了在锋利的角落积累的材料。一种方法被发现在堆积方向上定量地表明半径的几何精度。选择了激光焊接的焊接类型和接缝以实现良好的力流;但是,需要夹紧装置。为了减少隐藏的T关节的缺口效应,考虑了双重焊接策略。该设计使40%的重量减轻,与铸件活塞相比,重量为40 kg,重量为24千克。的金理分析和3D扫描。该研究显示了DMD的局限性和挑战以及如何通过部分分割克服机器的局限性。
目前的工作旨在根据基于锆石矿物质在各种钙化温度下制造Na1ÞX Zr 2 Si X P 3-X O 12化合物。在250、500和1000 C中钙化了制造的化合物。钙化温度对制造化合物的结构,晶相和辐射屏蔽特性的影响。X射线衍射衍射仪表明,单斜晶相出现在250 c的钙化温度下,500°C完全转化为高度对称性六边形晶体相。 122Kev。在本研究中对钙化温度对G射线屏蔽行为的影响进行了清晰的影响,当钙化温度从250 C的250 C升高到1000 C时,线性衰减系数在122KeV时的影响增加了218%。©2023韩国核协会,由Elsevier Korea LLC出版。这是CC BY-NC-ND许可证(http://creativecommons.org/licenses/by-nc-nd/4.0/)下的开放访问文章。
截至2021年5月10日,该公司拥有172,204,994级可交换的下属投票股(“可交换股票”),165级B类多票股票(“ B级股票”)和189,600,000 Class C类C级不访问C股(“ C级C股)(“ C级股票)”)。可交换股份在纽约证券交易所(“纽约证券交易所”)和多伦多证券交易所(“ TSX”)上列出。 B类股票和C类股份均由BEP的子公司持有(有关更多信息,请参见本通函8的“投票股的主要持有人”)。在2021年5月10日星期一(“记录日期”)的业务结束时,每个注册的可交换股票或B类股票记录持有人有权在会议上收到并投票。除非在此通函中另有规定的情况下,该日期的每个可交换份额或B级股份的每个持有人应有权对会议之前或其任何休会之前的所有事项进行投票,无论是亲自或代理。除非我们的文章或法律规定另有规定,除此之外,C级股票的持有人有权通知并参加公司股东的任何会议,但无权在任何此类会议上投票。除此之外,C级股票的持有人有权通知并参加公司股东的任何会议,但无权在任何此类会议上投票。
纳米技术的进展激发了对小型样品的超导性的研究,以及对它们超导状态的样品几何形状影响的研究。与散装超导体相比,包含大小的固定性会导致性质变化。众所周知,在I型体积超导体中,磁场会抑制超导性。然而,在小样品中,磁场的影响降低,阈值字段大大高于批量临界场。开发了I型超导球形包含的临界磁场计算方法。计算了针对边界条件的不同类型的临界场对纳入半径的依赖性。所提出的方法具有以任何理想的精度来确定关键场的价值的可能性。
技术发展与创新 (CDTI) 项目是西班牙科学与创新部支持的科学与创新任务计划 2021 年提案征集的一部分。该项目的拨款由欧盟通过下一代欧盟基金提供。
在本文中,我们从现代 Hopfield 模型的角度研究表格学习。具体来说,我们使用广义稀疏的现代 Hopfield 模型来学习表格数据表示和预测。在这项工作中,引入了 BiSHop(双向 S 分析 Hop 场模型)作为端到端表格学习的创新框架,解决了深度表格学习中的两个挑战:非旋转不变数据结构和特征稀疏性。受到联想记忆和注意力机制之间新建立的联系的启发,BiSHop 采用了双组分策略。它通过双向学习模块按列和按行顺序处理数据,每个模块都配备广义稀疏 Hopfield 层。这些层通过引入可学习的稀疏性扩展了传统的 Hopfield 模型。从方法论上讲,BiSHop 支持多尺度表示学习,能够有效地捕捉特征内和特征间的交互,并在各种尺度上具有自适应稀疏性。在各种真实世界数据集上进行的经验验证表明,BiSHop 以更少的超参数优化 (HPO) 运行超越了当前最先进的方法的性能,标志着深度表格学习的重大进步。
全球气候变化对农作物的生长,发育和产量产生了重大影响。中国东北部的大豆生产是中国传统的大豆生产地区之一,对于发展国内大豆工业并减少对进口大豆的依赖而言,具有很大的意义。因此,评估未来气候变化对中国东北大豆产量的影响至关重要,并提出合理的适应措施。在这项研究中,我们以中国东北部的富吉恩市为例,并使用了DSSAT中的Cropgro-Soybean模型(农业技术转移的决策支持系统)模拟未来气候变化对2020年代四个时期(2021-2030)的四个时期的大豆产量的影响(2041-2050)和2050S(2051-2060)在两个代表性浓度途径(RCP)方案(RCP4.5和RCP8.5)下,进一步确定最佳的农艺管理实践。结果表明,校准和经过验证的模型适合在研究区域模拟大豆。通过分析未来气候场景RCP4.5和RCP8.5在Precis区域气候模型中的气象数据,我们发现,在海伦吉安吉安吉省富士城的生长季节,平均温度,累积降水量和累积太阳辐射将主要增加。与模型仿真结果结合在一起,表明在CO 2受精的效果下,未来的气候变化将对大豆产量产生积极影响。与基线(1986-2005)相比,大豆产量将增加0.6%(7.4%),3.3%(5.1%),6.0%(16.8%)和12.3%(20.6%)和2020年代,2030年代,2040年代,2040年代和2050年度的rcp4.5(RCP4.5)(rcp8.5)。 RCP4.5(RCP8.5)分别为5月10日(5月5日)和50 mm(40mm)。在未来的气候条件下,农艺管理实践,例如在大豆增长的关键阶段推进播种日期和补充灌溉,将增加大豆产量,并使大豆增长更适合未来的气候变化。
爱好者建议AI可以改善运输和制造,药品,消费品和军事技术。Rama Chellappa,Guru Madhavan,Ed Schlesinger和John Anderson在PNAS Nexus文章中评估了这些主张,通过探索包括自动驾驶汽车和飞机,AI辅助手术,AI-Loced封闭的Loop Anesthesiology,AI和Robotics,AI和Robotics,AI和AI-AI-AI-Assist assiss foculess focuffe new Matersive focuffeers and Play sash sash serapers and sash nepers nexus文章。