WIDA 认识到英语语言发展需要多年时间,并且是可变的,取决于许多因素(例如年龄、成熟度、课堂体验、编程、动机和态度)。考虑到这一点,WIDA 围绕从幼儿园到 8 年级的各个年级以及 9-10 年级和 11-12 年级组制定了 ELD 标准。通过提供各个年级的示例,教育工作者可以识别与其年级相关的内容主题,最重要的是,提醒他们针对 ELL 的教学必须适合其年龄和发展水平。由于语言发展是一个多年的过程,我们鼓励教育工作者查看各个年级的语言发展示例,以更全面地了解学生的语言发展范围。WIDA 有一份单独的出版物,其中包含针对学前儿童(2.5-5.5 岁儿童)的早期语言发展标准,因为这个年龄段的语言发展是独一无二的。
健康计划,作为国歌的主要战略。他曾担任施乐公司的政府医疗保健总裁,向38个州提供多行医疗补助服务,并担任公司副全球CIO。拳击手以HP(Digital)为业务部门CIO,作为公司的CTO开始了他的职业生涯,是全球技术咨询公司的负责人,并担任全球外包服务的董事总经理。他拥有南卡罗来纳州医科大学的卫生管理荣誉,并获得了亚利桑那州健康科学的全球公共卫生中的第二次共产。他在牛津大学纳菲ELD初级保健医学院做了博士后工作。拳击手被认为是行为经济学以及使用分析和数字设备来改善人口健康的专家。他因其为残疾人社区的服务而获得了康涅狄格州立大学东部的荣誉医生。
对人类最突出的威胁之一是全球变暖。当前的全球二氧化碳(CO 2)从化石燃料使用中的散发物保持过多,并且光合作用CO 2同化的自然能力继续被淘汰。1 - 5因此,CO 2利用的前景不仅有助于实现更可耐受的大气CO 2水平,而且还将提供足够大的碳源,以替代化石碳源。在此寻求访问CO 2作为碳源的追求中,至关重要的是,我们从自然中获得灵感。在过去的十年中,合成生物学的ELD进行了积极的发展,其尖端技术旨在将生物催化的CO 2排放量转化为高增值化学产品,例如甲酸(HCOOH)。6,7甲酸可以进一步转化为高价值化学物质。8,9
摘要:核心部件全场位移感知与数字孪生在航空制造等精密制造行业中发挥着至关重要的作用。本文提出一种在线多点位移监测与矩阵补全理论相结合的实时全场位移感知方法。首先,建立基于多点观测信息的全场位移感知概念模型。为获得核心部件的全场位移,将部件划分为丰富的离散点,包括观测点与未观测点,并在此基础上建立观测点与全场位移之间的对应关系。然后,提出全场位移感知模型的求解方法。基于矩阵补全原理和仿真大数据,采用最优化问题建立模型,并给出伪代码。最后,进行全场位移感知实验。重复实验表明,采用该方法计算的位移最大误差小于0.094 mm,中值误差小于0.054 mm,平均时间小于0.48 s,有利于满足大型飞机装配对精度和效率的高精度要求。
声辐射力 (ARF) 是由声波产生的稳定力,是实现微物体操作的一种便捷方式,例如微样本分离 [1-3] 和富集 [4]、细胞分选 [5,6] 和单细胞操作 [7]。与使用时间周期声场相比,使用脉冲和波列等瞬态激励可以实现更精确的操作 [1-7]。首先,脉冲声操作受瑞利声流的干扰较小 [8,9],因为辐射力比声流建立得快得多 [10,11]。其次,使用声波包可以定位声干涉图样,从而控制声捕获区域的空间范围 [12]。事实上,驻波比行波施加了大得多的辐射力(在小颗粒极限内),激光制导声镊(LGAT)[13] 利用这种干涉原理,创造了一种混合辐射力景观,该景观将高振幅压电声场(强,Z 场)和光图案光生声场(弱,L 场)耦合在一起。混合场保留了 L 场的空间信息和 Z 场的强度。
本文介绍了一种用于捕获离子的量子实验中磁场噪声的前馈补偿系统。该补偿系统在两个实验装置中实现,一个用于量子模拟,另一个用于精密光谱学。在这两个实验中,量子比特都被编码在一对捕获的 40 Ca + 离子的电子能级中。补偿系统用于抑制实验室中由 50 Hz 电源线引起的环境磁场噪声。基于磁场线圈和函数发生器的前馈系统采用一种简单的技术方法,以产生调制磁场。前馈补偿系统的工作原理是施加异相磁场,以破坏性地叠加离子位置的磁场噪声。对于函数发生器,使用可编程的 RedPitaya 板。在这项工作中,为该板开发了一个控制软件,允许补偿系统快速运行。此外,还开发了一个实验序列,其中离子量子比特被用作量化磁场噪声的传感器。该实验依赖于 CPMG π 脉冲序列。
摘要。我们介绍了旨在以统一的方式解决连续空间均值场(MFG)和平均场控制(MFC)问题的增强学习算法的开发和分析。所提出的方法通过参数化的分数函数将参与者 - 批判性(AC)范式与平均场分布的表示形式配对,可以以在线方式进行有效更新,并使用Langevin Dynamics从产生的分布中获取样品。AC代理和分数函数被迭代更新以收敛到MFG平衡或给定平均领域问题的MFC Optimum,具体取决于学习率的选择。算法的直接修改使我们能够求解混合的均值场控制游戏。使用在有限的地平线框架中使用线性界面基准来评估我们的算法的性能。
ELOP的目标与4个CS交流,协作,批判性思维和创造力以及社交情感学习(SEL)保持一致。这些4C将通过促进积极学习和参与学习的丰富活动来促进这些4C。这些活动将有意将目标和课程与21世纪的技能联系起来,以帮助学生在内容领域中掌握。技能建设活动将由负责监督后教学和非学校日期的管理员领导,他/她将与雇用的内容负责人(科学,数学,阅读,ELD和体育)一起工作,以支持技能发展。合同的辅导服务可能是支持学生学术需求的很大一部分,并且还提供丰富的实地考察(即荒野科学野外旅行,卡塔琳娜野外旅行等)将是通过体验式郊游以视觉学习的一部分。
纳米技术的开发和应用在医疗ELD方面取得了显着进步。各种纳米尺度的构建块为诊断和治疗疾病提供了替代的输送选项。1 - 4食品药物管理局(FDA)已批准了几种纳米载体,用于癌症或其他疾病的临床成像和治疗,例如脂质体和基于脂质的纳米颗粒,蛋白质纳米颗粒,聚合物胶束,无机纳米颗粒等。5 - 8然而,大多数纳米载体被困在临床前研究中,原因有很多:批处理综合,生物相容性问题,缺乏合适的靶向选择部位,尤其是潜在的免疫毒性。9,10理想的纳米载体应具有出色的生物相容性,效果和靶向能力。由于基于脂蛋白的天然纳米颗粒可以满足这些要求,因此这是纳米医学的一个有希望的方向。11
通过探测器观察量子场时,仅访问空间分离的本地区域的混合状态(一种无处不在的实验设计)时,可以限制访问分布式纠缠的全部范围的能力,并受经典相关性的笼罩。通过对两个检测贴片外部的田间测量进行投影测量,并在经典上传达结果,可以确定其纠缠量化的基本纯状态。在自由标量场真空的高斯连续变量状态中,该协议发现了在该场内建立的空间类似纠缠与可局部可检测的空间纠缠之间的差异。发现这种差异随着观察区域之间的分离而成倍增长。从本文中的洞察力和实用指南中所提供的协议,以阐明从一对本地观察者的Vantage查看的量子线相关性的不可避免的失真。