摘要。Cleansky2项目Solifly正在为航空应用开发更多的结构电池。本文提出了结构整合的概念以及评估结构电池整合对CFRP固体层压板机械性能的影响的方法,考虑到结构电池插入的尺寸和形状以及通过层压层厚度的位置考虑到其位置。已经实施了有限元仿真的完全参数,计算有效的数值策略来评估机械性能,并且首次随着细胞几何形状和集成位置的变化,矩阵损伤的首次开始。使用数字图像相关性和声学发射,获得了SB细胞成分和细胞原型的第一个机械表征数据。讨论了对功能分离组件的SB集成概念的优势和权衡的初步评估。
Thi Huong Ngo、Rémi Comyn、Eric Frayssinet、Hyonju Chauveau、Sébastien Chenot 等人。具有位错簇的垂直 GaN-on-GaN 肖特基二极管的阴极发光和电学研究。《晶体生长杂志》,Elsevier,2020 年,552,第 125911 页。�10.1016/j.jcrysgro.2020.125911�。�hal- 03418915�
鉴于人口在地球上的增加,对能量的需求有相应的增加。满足这种能源需求的生态和经济方法之一是通过可再生能源。因此,这项研究分析了塞尔维亚太阳辐射产生电能的潜力。太阳是可再生能源的最大来源,塞尔维亚具有很大的利用太阳辐射的潜力。在这项工作中,我们使用不同的光伏面板技术对光伏发电厂的电能生产进行了比较分析。这些技术不仅会影响太阳照射到电能的转化程度,而且还影响有关使用CO 2排放的光伏面板的生态参数。在这项工作中,分析了以下光伏面板技术:单晶,多晶,多晶,薄层无定形(A-SI)和镉 - 泰特里德(Telluride)(CDTE)。用于分析的软件工具是PVSYST。
a Laboratory Alzheimer's Neuroimaging & Epidemiology, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy b Department of Neuroscience & Padova Neuroscience Center, University of Padova, Padova, Italy c Radiology, Department of Diagnostic and Public Health, University of Verona & Department of Diagnostics and Pathology, University Hospital, Verona, Italy d Department of Computer Science, University of Verona, Verona, Italy e Unit of Statistics, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy f Neuropsychology Unit, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy g Biological Psychiatric Unit, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy h Department of Pharmacological and Biomolecular Sciences, University of Milan, Milan, Italy i Neurology Unit, Valle Camonica Hospital, Brescia, Italy j Alzheimer's Unit - Memory Clinic, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy k Venetian Institute of Molecular Medicine,意大利帕多瓦 VIMM l 荷兰阿姆斯特丹自由大学神经基因组学和认知研究中心 m 瑞士日内瓦大学医院和日内瓦大学记忆诊所和 LANVIE 衰老神经影像实验室
AGH 空间技术中心研究人员团队的全职副教授职位。该职位的任务是开发基于创新思维和科学卓越的研究计划,以补充目前在卫星数据处理、卫星数据采集方法改进和卫星图像处理算法开发方面的专业知识。担任此职位的人员将负责国际层面的研究计划,设计和实施卫星数据处理和广义上的学术创业研究,并为基于国家和国际基金的项目筹集资金,包括来自航天工业实体的资金。作为研究活动的一部分,他或她将与学术单位、利益相关者和行业伙伴建立国际伙伴关系。该职位的候选人应具有建立和加速初创企业的经验。主题领域:卫星数据处理、卫星图像处理算法、光学传感器开发全职工作,固定期限合同至 2025 年 12 月 31 日,可延长,包括永久合同延长。计划从 2025 年 3 月 24 日起就职。
摘要 —本文研究了使用电反射法作为一种无损检测技术来监测并联电池组配置中电池极耳焊接的健康状况。开发了由圆柱形锂离子电池组成的 3D 模型,这些电池通过铜焊接在每个末端通过极耳连接。进行了电流表面分布分析,以了解反射信号的传播并选择最佳设置以提高反射灵敏度。然后,创建了几个严重程度和位置各异的缺陷模型来模拟焊接层中材料的逐渐损失。这项工作证明了基于反射仪的系统能够检测并联电池组配置中的焊接退化,据我们所知,这在文献中从未做过。索引词 —电反射法;锂离子电池极耳焊接;缺陷诊断
理想情况下,电池供电系统的设计需要同时进行所有组件的尺寸。为了为此目的做出贡献,我们提出了一种物理方法,以将电池等效电路模型(ECM)的电气参数与电池的电极尺寸相结合。因为它仅需要非侵入性测量,因此系统集成器可以很容易地使用它。要测试所提出的方法,我们选择了三个具有不同大小和标称容量的商业硬币细胞(25 mA H,60 mA H和120 mA H)。仅这些细胞的电极长度有所不同,因此该研究的重点是创建依赖性模型,以预测ECM参数相对于该特定维度。所提出的ECM带来了准确的电压模拟,并且对三个单元的依赖模型预测令人满意,平均精度为6.3%。多亏了提出的方法,可以在表征范围内预测任何细胞大小和容量的参数(在这里25 mA h和120 mA H之间)。因此,它是开发定制细胞的有前途的工具。
Axel Rouviller、Moussa Mezhoud、Alex Misiak、Meiling Zhang、Nicolas Chery 等人。磁控溅射生长的钒酸锶薄膜的结构、电学和光学特性。ACS Applied Electronic Materials,印刷中,6 (2),第 1318-1329 页。�10.1021/acsaelm.3c01642�。�hal-04400444�
摘要本文介绍了系统工程框架中复杂物理系统初步设计的方法。这种方法集中在设计前任务所涉及的活动和参与者上。它专注于设计问题的建模(设计问题规范),这是一种用于指定和建模工程设计问题的形式主义。这种设计方法完成了基于模拟的分析方法,该方法主要用于物理系统的设计。尤其是我们的方法允许综合设计前架构,分析/仿真方法无法做到。从要求的文本规范开始,提出的方法构建了设计问题的正式模型,并使用约束编程解决了它。思想和概念:问题模型可重复使用的问题,问题,知识和解决方案空间的概念以及要求的正式规范以及将设计问题模型与设计系统模型区分开来的所有其他内容。电动汽车的锂离子电池设计的一个例子是本文的实际用例。
动脉、植入式设备(如起搏器或植入式除颤器),或在最极端的情况下移植整个心脏(Aronow,2009)。然而,这些疗法并不能直接修复心脏受损的组织。为此,人们进行了无数次尝试,将干细胞衍生的心肌细胞(CM)直接整合到梗塞的心脏中(Silver 等人,2021),无论是单细胞植入(Lee 等人,2024)还是实验室制造的心脏贴片(Liu 等人,2024)。迄今为止,仍然存在阻碍这些治疗成功的重大挑战,例如细胞保留(Wu 等人,2021 年)、由于干细胞分化不完全而导致的畸胎瘤形成风险(Kawamura 等人,2016 年)或缺乏电生理整合(Gepstein 等人,2010 年;Liao 等人,2010 年)。解决这些问题的一步是持续生成干细胞衍生的成熟 CM,这些 CM 在移植后可以通过连接蛋白电耦合到现有的心脏组织(Roell 等人,2007 年)并对电信号作出反应以控制心跳(Mandel 等人,2012 年)。电信号对于体内心脏组织的发育非常重要(Thomas 等人,2018 年;Hirota 等人,1985 年)。体外电刺激 (ES) 此前已被探索作为心脏细胞成熟和功能的调节剂,特别是在人类诱导多能干细胞衍生的 CM (hiPSC-CM) 中 (Ronaldson-Bouchard 等人,2019 年;Ma 等人,2018 年;Hernández 等人,2018 年)。然而,这些研究的结果并不一致。虽然大多数研究表明,一定量的直接耦合脉动 ES 有利于 CM 成熟,但尚未就最佳刺激参数达成共识,包括刺激信号的频率、幅度和脉冲持续时间 (Dai 等人,2021 年)。虽然大多数已发表的研究都是使用 3 – 6 V/cm 范围内的电场强度进行的(Ruan 等人,2016 年;Crestani 等人,2020 年;Chan 等人,2013 年),但其他研究报告称 ES 低至 2 V/cm(Hirt 等人,2014 年)或高达 9 V/cm(Ronaldson-Bouchard 等人,2018 年)。研究在 ES 信号的频率(Tandon 等人,2011 年)和持续时间(Geng 等人,2018 年;Yoshida 等人,2019 年)以及开始此类刺激的发育时间点(Crestani 等人,2020 年;LaBarge 等人,2019 年)方面也存在显著差异。个别研究可能会同时改变多个参数,例如:电刺激的幅度、脉冲频率、持续时间和发展时间。鉴于其中一些研究(Gabetti 等人,2023 年;Hu 等人,2024 年)报告了多个参数变化的结果,但没有适当的控制,因此很难区分哪些参数对于指导心脏分化至关重要。生物反应器是动态细胞和组织培养容器,用于为体外生长的细胞提供刺激,从而重现静态培养条件下通常找不到的环境线索(Licata 等人,2023 年)。尽管最近开发了生物反应器来向心脏细胞传递电信号,但作者往往未能提供足够的细节来确保工作可以重现(Gabetti 等人,2023 年;Hu 等人,2024 年)。在本研究中,我们提出了一种生物反应器,用于精确、可控的电刺激体外生长在 2D 单层或 3D 球体中的细胞。该生物反应器设计用于低剪切流体混合,以增强营养物质的利用率,同时还允许在整个实验期间使用