摘要 — 在晶圆级上对电力电子器件芯片结构进行精确而准确的电气特性分析对于将器件操作与设计进行比较以及对可靠性问题进行建模至关重要。本文介绍了一种分立封装商用碳化硅 MOSFET 的二维局部电气特性参数分析。在横截面样品上,使用扫描电子显微镜 (SEM) 中的电子束感应电流 (EBIC) 来定位体二极管的 pn 结,评估电子束能量对该区域成像的影响。采用基于原子力显微镜 (AFM) 的扫描电容显微镜 (SCM) 分析封装碳化硅 MOSFET 器件的结区。提出了一种参数方法来揭示 MOSFET 中所有层的局部电气特性(n 型、p 型、掺杂 SiC 外延层的低、中、高掺杂水平以及 SiC 衬底和硅栅极)。本文的目的是揭示 EBIC 和 SCM 对 SiC 封装器件进行全面特性分析的潜力。研究了 SCM 采集期间施加的电压(V DC 和 V AC )的影响,以量化它们对 MOSFET SiC 掺杂层分析的影响。尖端/样品纳米 MOS 接触的 TCAD 模拟支持纳米电气实验,以确认碳化硅芯片 AFM 图的掺杂水平解释。
我们展示了如何使用场合可编程的门阵列(FPGA)及其协会的高级合成(HLS)编译器来求解具有不完整市场的异质代理模型,并且汇总了不确定性(Krusell和Smith(Krusell和Smith(1998)))。我们记录了一个单个FPGA传递的加速度与在常规群集中使用69个CPU内核提供的加速度相当。解决模型的1200版的时间从8小时下降到7分钟,说明了结构估计的巨大潜力。我们描述了如何实现多个加速机会(二线,数据级并行性和数据精度),并以为传统的顺序专业人员编写的C/C ++代码的最小修改,然后我们在Amazon Web服务中易于使用FPGA。我们量化了这些加速度的加速和成本。我们的论文是迈向新的,电气工程经济学的第一步,重点是设计经济学的综合加速器,以解决具有挑战性的定量模型。复制代码可在GitHub上获得。
保留所有权利。未经许可就不允许重复使用。(未经同行评审证明)是作者/资助者,他已授予Medrxiv的许可证,以永久显示预印本。
© 版权 本书的出版权归 Serüven 出版社所有。未经引用不得引用,未经允许不得以任何方式转载。该书的出版权归Serüven Publishing所有。引用不可不注明出处,未经允许不得以任何方式转载。
众所周知,由于电子表面散射,传统金属(如铜)的电阻率在薄膜中会增加,从而限制了金属在纳米级电子器件中的性能。在这里,我们发现在相对较低的 400°C 温度下沉积的磷化铌 (NbP) 半金属中,随着薄膜厚度的降低,电阻率会异常降低。在厚度小于 5 纳米的薄膜中,室温电阻率(1.5 纳米厚的 NbP 约为 34 微欧姆厘米)比我们的块体 NbP 薄膜的电阻率低六倍,并且低于类似厚度的传统金属(通常约为 100 微欧姆厘米)。NbP 薄膜不是晶体,而是在非晶态基质内表现出局部纳米晶体、短程有序。我们的分析表明,较低的有效电阻率是由通过表面通道的传导以及薄膜厚度减小时的高表面载流子密度和足够好的迁移率引起的。这些结果和在此获得的基本见解可以实现超越传统金属限制的超薄、低电阻率纳米电子线。
电气与计算机工程理学士学位由电气与计算机工程系提供。该课程为学生在数字系统、嵌入式处理器应用、数字通信、控制系统、传感器网络、生物医学信号处理、微电子、计算机安全和电力网络等领域从事工程师职业做好准备。这些职业涉及电气和电子系统和设备的应用、开发、研究和设计。电气和计算机工程师参与电信网络、蜂窝电话、计算机和其他基于微处理器的设备、消费电子产品、航天器和机器人控制系统的设计和开发,以及电力和汽车行业的许多方面。
“我的东西在哪里?”项目是一项协作电气行业的“供应链”可见性工作。电气行业协会的参与者包括全国电气分销商协会(NAED),国家电气制造商协会(NEMA),国家电气承包商协会(NECA)和国家电气制造商代表协会(NEMRA)。这项工作由全国电气分销商协会(NAED)通过其数字卓越中心(DCOE)领导和资助。的目标是通过创建所需的数据定义和标准,以及实时通信方法来提高电气行业的供应链透明度和效率,以使无缝访问实时信息无缝访问,从而彻底改变了订单的跟踪,管理和在整个供应链中进行的方式 - 在整个供应链中 - 在制造商,制造商,制造商,制造商,制造商,制造商的代表和最终用户客户和最终用户客户之间进行了沟通。
x cd x x fe 2 o 4(x = 0.00,0.01,0.01,0.03,0.05,0.07,0.09)由共同途径准备。准备后,样品在温度900°C下烧结6小时。不同的表征技术,例如XRD(X射线划分),FTIR(傅立叶转换 - 红外 - 光镜检查),UV-VIS。和IV-特征术用于探索掺杂元件(CD)对纳米粒子的电,结构和光学特性的影响。XRD数据证实了Fe2O3的第二阶段的材料的单相,平均晶体大小在38.09-45.15 nm的范围内。在8.4471Å到8.4763Å中发现的准备材料的平均晶格常数值。在FTIR数据中,在所有样本中都发现了一个突出的频段,在某些样品中,在400-4000cm-1的范围内发现了第二个频段。IV观察性揭示了DC抗药性对温度的依赖性以及在0.1365到0.4332 EV/1000K的范围内的活化能值(∆𝐸𝐸)的依赖性。紫外线。分析证实了平均波长286 nm的所有样品的吸收峰。在此波长吸收下,所有样品的吸收范围为2.8722-3.2956(A.U)。CD浓度负责减少饱和磁性和损耗的降低。由于合适的特性,这些材料在录制媒体,高频应用和电子工程等许多分支等不同领域都有用。(2024年10月16日收到; 2024年12月11日接受)关键词:纳米结构,共凝结法,XRD,晶体大小,电阻率,激活能量1.引言尖晶石铁氧体是一类带有通用式AB 2 O 4的磁性材料,其中A和B代表不同的金属阳离子,O是氧。它们具有称为尖晶石结构的立方晶体结构,以矿物尖晶石的名字命名。尖晶石铁氧体表现出磁性,电气和结构特性的组合,使其在广泛的应用中有用,包括磁性存储,变压器,电感器和生物医学设备[1]。