本研究介绍了 Power-to-X 工艺中电解设施集成对电网的影响。新颖的模拟设置结合了高分辨率电网优化模型和碱性水电解的详细调度模型。通过设置不同的电解设施安装容量和生产策略,研究了德国北部电力线的利用率和拥堵情况。对于高达 300 MW(~50 ktH 2 /a)的电解容量,可以观察到对电网的局部影响,而更高的容量会造成超区域影响。因此,影响被定义为偏离平均线路利用率 5% 以上。此外,最小线路拥堵被确定为与电解设施的每日约束生产策略相一致。我们的结果表明,综合电网设施运行的良好折衷方案可以最大限度地降低生产成本,并减少对电网的影响。
4 氢气生产 13 4.1 文献综述. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 4.3 电解器 OPEX 成本 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ...
(1)有一个治疗桌或其他家具,用于安置客户进行治疗; (2)至少有一个循环型灯,卤素灯或其他类型或放大灯; (3)在同一楼层和同一楼的厕所设施上都有洗手设施,包括肥皂或杀菌性皮肤的准备工作; (4)提供标有非疾病检查手套,棉球和防腐产品,用于清洁客户的皮肤,清洁仪器的材料和其他物品,用于清洁工作场所的材料或清洁合同,纸或棉花毛巾的文档,以及耐用的耐用容器和替代材料的塑料袋; (5)拥有所使用的灭菌方法所需的灭菌设备和耗材; (6)有一个有盖的垃圾桶,如果使用亚麻布,则可以洗衣服或封闭的容器进行洗衣,每个工作场所可供选择; (7)有存储设施以包含电解练习的设备,仪器和供应; (8)每年在被许可人练习的每个位置进行检查; (9)如果搬迁到办公室,请在练习之前检查。(b)除了本规则(a)款所需的项目外,每个激光从业者办公室还应具有以下内容:
我想真诚地感谢我的家人在整个论文完成期间的坚定支持和鼓励。我非常感谢我虔诚的导师莫里教授和我的同事Maj的基本建议和知识。这项研究的成功受到了他们的建议和帮助的极大影响。他们的参与对于本文的成功至关重要。最后,我想感谢学术界创造有利于学习和研究的氛围。
摘要 尽管通过多种催化策略在废弃 CO 2 的回收利用方面取得了稳步进展,但每种方法都有明显的局限性,阻碍了糖等复杂产品的生成。在本文中,我们提供了一份路线图,评估了与最先进的电化学工艺相关的可行性,这些工艺可用于将 CO 2 转化为乙醇醛和甲醛,这两者都是通过福尔马糖反应生成糖的基本成分。我们确定即使在低浓度下,乙醇醛也在糖形成过程中作为自催化引发剂发挥着关键作用,并确定甲醛生产是一个瓶颈。我们的研究证明了在化学复杂的 CO 2 电解产物流中成功进行的福尔马糖反应的化学弹性。这项工作表明,CO 2 引发的糖是快速生长和可转基因大肠杆菌的适当原料。总之,我们介绍了一个由实验证据支持的路线图,该路线图突破了 CO2 电转化可实现的产品复杂性的界限,同时将 CO2 整合到维持生命的糖中。
近年来,我们看到航天工业发生了重大变化,每年发射的卫星数量比以往任何时候都多。据预测,到本世纪末,将有 4.5 倍的航天器被送入太空,这将带来各种挑战 [1]。为了满足日益增长的需求,每颗卫星的生产成本必须降低,而卫星数量的增加将导致必须更频繁地执行防撞机动。这也意味着更多的航天器将需要推进系统来确保安全运行并确保遵守《欧洲空间碎片减缓行为准则》。截至目前,大多数推进系统都在使用肼及其衍生物等剧毒推进剂,因此在处理推进系统组件时需要采取广泛的安全措施。这使得新设备的开发以及现有设备的测试和集成变得复杂,因此成本高昂。即使是电力推进系统也经常依赖氙气等稀缺气体,而氙气的年产量有限,因此推进剂成本对整个推进系统成本有重大影响。这种情况和许多其他原因正在推动人们不断寻找使用绿色推进剂的替代解决方案。最有前途的绿色推进技术之一是水电解推进 (WEP) [ 2 ] [ 3 ]。在这种系统中,航天器在地面上用纯净水代替传统的高反应性推进剂填充。进入太空后,电解器用于将水分解成氢气和氧气。产生的气体随后可储存在较小的中间罐中,或直接用于化学或电动推进器以推动航天器。欧洲的几家公司和大学目前正在开发这项技术,而两个关键部件是推进器和电解器。到目前为止,只有少数电解器曾被发射到太空。
随着间歇性可再生能源在电力结构中的份额不断上升,能源储存将成为未来几十年电力系统的关键组成部分。在储存技术组合中,氢被广泛认为是一种有前途的选择,可用于长期储存大量可再生电力。因此,在未来可再生能源 (RES) 将成为主导能源的情况下,人们认识到电力转氢 (P2H) 在长期内存在的机会。但预计氢不仅是长期能源转换的媒介,而且是可再生能源发电的替代品。
Ablav Abschaltbare lastenverordnung - engl。German Switchable Load Regulation AEL Alkaline Electrolyzer AEM Anion Exchange Membrane (electrolyzer) ASM Asset Sizing Module AST Accelerated Stress Test BESS Battery Energy Storage System BLA Baseload Annual BLM Baseload Monthly BoL Beginning of Life BoP Balance of Plant BoS Balance of System CAPEX Capital Expenditures CBC COIN Branch and Cut CCUS Carbon Capture, Utilization and Storage COIN-OR Computational运营研究基础设施COP绩效CRF资本恢复系数DA日期DA委托书Destatis deutsches statisistisches Bundesamt - Engl。德国联邦统计办公室EEG ERNEUERBARE ENERGIEN GESETZ - ENGL。可再生能源法EEX EX欧洲能源交易EFET欧洲能源交易者联合会EHB欧洲氢骨干eNfg Enfg Enfiefiefinanzierungsgesetz -Engl。德国能源融资法Enwg EnergiewStschaftSgesetzetz - Engl。德国能源行业ACT EOL生命终止EPEX欧洲电力交易所EPC工程,采购和建设EXAA EXAA EXAA能源交易所Austria Austria FHP固定的小时概况小时的GOO来源GT生成和传输
化石燃料消耗的不断增长加上全球对环境的担忧迫使人们快速发展可持续能源。[1] 为了克服这一严峻形势,人们投入了巨大的努力来探索电化学转换和存储装置,如水分解、氮和二氧化碳的电化学还原、燃料电池、可充电电池和电合成技术。[2] 其中,水分解尤其令人感兴趣,因为它可以与可再生风能和太阳能轻松结合,生产高纯度的氢燃料。[3,4] 然而,水分解的氢析出反应 (HER) 和氧析出反应 (OER) 在热力学上都是上坡形且动力学缓慢,这不可避免地降低了整体的能源效率。[5] 为了解决这个问题,高效的电催化剂对于降低能量壁垒和加速 OER 和 HER 反应是必不可少的。目前,许多过渡金属基化合物已被证明是水分解的有前途的电催化剂。 [6]
