开发先进的下一代 LA 电解器以克服上述限制的关键研发机会包括:开发新材料、改进组件界面以及设计新型电池和堆栈。需要进行更多基础诊断研究,以将性能与材料和界面特性关联起来并了解降解机制。此类研究将为新型电池和堆栈组件的材料开发工作提供参考。隔膜和催化剂尤其被强调为历史上未得到充分开发的材料,具有巨大的进步机会。材料的表征和测试应在相关操作条件下使用标准化协议进行,包括下一代 LA 系统预期的操作条件(例如间歇操作、
• 组合/集成节点以展示连接时的价值(总和大于各个部分的组合) • 增加核心实验室之间的协作 • 为 EMN 实验室提供核心研究,而不仅仅是项目支持 • 第 1 阶段可衡量的目标:确认可以验证非原位表征方法对设备性能和耐用性的适用性
该报告的范围是主要关注氧气市场,生产场景和最终在该项目中考虑的案例研究中使用机会。基于讨论的氧气的各个市场,钢铁行业对绿色氢的未来进行了巨大的投资,因为在其过程中需要大量的过程才能摆脱依赖煤炭的生产。该病例已被研究以提供从100兆瓦电解器产生的氧气以用于燃烧或炉子。加工氧气以去除氢和水以去除氢和水。它将进一步压缩至15个bar,可以通过管道运送到钢铁行业。同样,研究了另一例,用于在医院提供2500张病床的医用氧气,每年需要约1,210万NM3的氧气。提出了一个由近海风电场供电的20 MW电解器,然后在200 bar处通过圆柱运输纯化的氧气。
• PEM 电解领域的全球市场和技术领导者 • Nel ASA 的美国子公司,总部位于挪威奥斯陆 • 所有制造均在美国康涅狄格州沃灵福德完成 • 100 名员工,100,000 平方英尺(9,300 平方米)工厂 • 经过 cTÜVus 和 TÜV 的 CE 标志认证 • 在 75 多个国家安装了 2,700+ PEM 系统 通过 ISO 90001 认证
节省量取决于太空运输方法和假设;此前的火星齿轮比计算显示,仅节省 7.5 公斤 火星上升阶段的推进剂生产可节省 25,000 公斤质量 = 发射至低地球轨道的重量为 187,500 至 282,500 公斤
摘要:CO 2的可再生电驱动电解可能是一种可行的碳中性方法,用于生产基于碳的增值化学物质,例如一氧化碳,甲酸,甲酸,乙烯和乙醇。典型的CO 2电解仪源于高功率要求,这主要是由于能量强度阳极反应。在这项工作中,我们通过在阳极处使用基于Nife的双金属催化剂并施加磁场,从而减少了阳极过电势,从而减少了整体细胞能量消耗。对于CO 2电解过程生产CO,在基于电极的电极流动电解酶中,我们证明,在超过-300 mA/cm 2的CO部分电流密度下,可以使用ANODE和/或使用磁性磁力器的Nife catalyst来实现从7%到64%的功率节省。我们将最大CO部分电流密度达到-565 mA/cm 2,在全细胞能量效率为45%的情况下,将2 M KOH作为电解质。t
* 此金额不包括成本分摊或项目利用的 HydroGEN 资源支持(由 DOE 单独提供) * 我们仍在等待奖励设置,因此据我所知,迄今为止尚未收到任何 DOE 资金
