提议的主题与“清洁燃料材料挑战”计划非常契合,因为它探索了一种可扩展的解决方案,用于制造具有独特形态和特性的纳米颗粒(电催化剂)。它有助于解决阻碍这一关键技术工业化的材料发现和开发挑战。该项目与 MCF 计划下与不列颠哥伦比亚大学合作的现有项目相一致,并将利用该计划下开发的能力进行材料性能评估。该项目有可能在材料成分以及方法论的某些方面产生知识产权。
降低通过敬畏的电解H 2的生产成本(今天总计每千克5.50 h)4需要通过降低电解电池超潜在的同时保留Ni基电催化剂的典型的高电催化剂耐用性来发展更有效的电极。商业成熟度,该电解允许在2 a cm 2以上进行持续操作,但使用大量昂贵且稀有的铂金属金属(PGM),尤其是PT和IR。在过去的十年中,出现了一种新颖的技术,将高生产率PEMWE与使用非关键资源相结合的新技术已经出现,即一种新型的电解质类,即碱性膜水电油(AMWES),将阴离子交换膜用作分离器,并可以用PGM-FRE-FRE-FRE-FEM-FREA cATALYSTS进行操作,5使技术和
摘要:为应对能源危机和环境污染,世界范围内可再生能源发电得到快速发展,目前利用最为广泛的是太阳能和风能,但也造成了严重的弃光弃风问题。氢能以其高效、清洁、可再生的特点成为电能储存的理想载体,以可再生能源为动力源的电解水制氢技术是最有前景的能源转换方式之一。本文简要分析了近年来我国可再生能源发电和消费的现状,阐述了碱性、质子交换膜和高温固体氧化物电解水制氢技术的特点、原理、发展现状及改进方法,并结合实例论证了其在可再生能源发电和储能领域的应用前景。
对可再生能源的日益重视导致氢和电池研究的研发工作激增。阳极析氧反应 (OER) 周围的密集电化学环境困扰着催化层、基底和多孔传输层的活性和稳定性,最终影响这两个行业。在此,我们报告了电位循环 (PC) 316L 不锈钢毡多孔传输层 (PTL) 用于阴离子交换膜水电解的好处。如 SEM、EDS、XPS、XRD 和拉曼光谱所示,PC 增加了表面粗糙度并通过铁的氧化产生了 CrFe 5 Ni 2 -O x H y 层。在三电极设置中进行的 PC 后测试显示极化电阻下降了约 68%,这反映在其用作阴离子交换膜水电解器 (AEMWE) 中的阳极时的性能上。总体而言,在阳极条件下对 PTL 进行电位循环在 AEMWE 中测试时可提高性能。可以考虑对不锈钢阳极实施这种处理,以提高 AEMWE 性能。
简介.................... ... ................. ... ....................................................................................................................................................................................................... 4574 风力发电....................................................................................................................................................................................... ... 4575 利用可再生能源生产氢气系统 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4576 利用可再生能源供电及电解器耐久性 . ... ................. ... . . . . . . . . . . . 4578 使用基于可再生能源的电力的水电解器相关问题. . . . . . . . . . . . . 4580 使用可再生能源的碱性水电解器相关问题. . . . . . . . . . . . . . . . 4580 使用可再生能源的 PEM 水电解器相关问题. . . . . . . . . . . . . . . . . . . . . . . . . 4583 利用可再生能源的 SOEC 的动态特性 . . . . . . . . . . . . . . . . . . . . . . . . 4584 结论与展望 . . . . . . . . . . . . . . . . . . . ................. ... . . . . 4588 致谢. ... 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 4588
项目历史 更薄的膜和替代催化剂有望提高 PEM 电解器的稳定运行和效率。该项目提高了材料性能并将组件集成在一起,同时利用基本特性来理解和突破设计极限。
免责声明 本文件为美国政府机构赞助工作的记录。美国政府、劳伦斯利弗莫尔国家安全有限责任公司及其任何雇员均不对所披露的任何信息、设备、产品或流程的准确性、完整性或实用性做任何明示或暗示的保证,也不承担任何法律责任或义务,也不表示其使用不会侵犯私有权利。本文以商品名、商标、制造商或其他方式提及任何特定商业产品、流程或服务并不一定构成或暗示美国政府或劳伦斯利弗莫尔国家安全有限责任公司对其的认可、推荐或支持。本文表达的作者观点和意见不一定代表或反映美国政府或劳伦斯利弗莫尔国家安全有限责任公司的观点和意见,不得用于广告或产品代言目的。
应力测试是开发出,该测试的重点是质子交换膜电解的阳极催化剂层降解,这是由于模拟的起步操作而引起的。ex exte测试表明,由于近表面还原和循环到高电位时,重复的氧化还原循环会加速催化剂溶解。相似的结果发生在原位,其中发现细胞动力学(> 70%),虹膜从阳极催化剂层迁移到膜中。但是,观察到其他过程,包括虹膜氧化的变化,较薄和更密集的催化剂层的形成以及从运输层迁移的铂。还发现了增加的界面弱化,通过增加催化剂层的接触电阻和分离部分,从而增加了欧姆和动力学损失。反复的水流关闭进一步加速性能损失,并增加界面和催化剂层内的撕裂和分层的频率。这些测试应用于几种商业催化剂,在其中观察到含有钌或高金属含量的催化剂的损失率更高。这些结果表明有必要了解如何发生操作停止,以确定损失机制的加速方式以及制定限制绩效损失的策略。©2024作者。由IOP Publishing Limited代表电化学学会出版。[doi:10.1149/1945-7111/ad2bea]这是根据Creative Commons Attribution 4.0许可(CC by,http://creativecommons.org/licenses/ by/4.0/)分发的开放式访问文章,如果原始工作适当地引用了原始作品,则可以在任何媒介中不受限制地重复使用工作。
摘要生成氢,通过碱性水电解显示出有望作为能源的希望。本评论探讨了选择电极和评估催化剂以提高氢产生的效率和性能的重要意义。它总结了与碱性电解反应有关的激活能量和损失,强调了电极材料和催化剂的必要性。审查还涉及诸如电力消耗和基于铂金属的电催化剂之类的挑战,该催化剂提出了各种电极材料和催化剂,具有较高的活性和氢生产的选择性。此外,它讨论了促进副产品与氢气分离的电解细胞设计。该研究表明,在10、500和1000 mA·Cm -2时,势较低,较低的70、318和361 mV,NIOX/NF表现出强烈的碱氢的演化活性,从而在碱性HER中表现出色。此外,它概述了碱性水电解技术的进步,该技术着重于提高效率和降低与电力消耗相关的运营成本。总体而言,本综述强调了选择电极和评估催化剂在优化碱性水电产生中的作用。
