摘要——本文提出了一种优化钒液流电池 (VRFB) 能量容量恢复的新算法。VRFB 技术可以通过电解质再平衡部分恢复损失的容量来延长其使用寿命。我们的算法找到了这些再平衡服务的最佳“数量”和“时间”,以最小化服务成本,同时最大化能源套利收益。我们表明,该问题的线性化形式可以解析解决,并且目标函数是凸的。为了解决整个问题,我们开发了一种两步混合整数线性规划 (MILP) 算法,该算法首先找到最佳服务数量的界限,然后优化服务的数量和时间。然后,我们针对纽约 ISO 的能源套利案例研究给出了理论分析和优化结果。
1. 已经证明能够制造 Mg-Si zintl 化合物模型电极,并使用 XPS、STEM-EDS 和 FTIR/Raman 将 SEI 化学与硅进行比较。Q1 完成 2. 已经建立了实验和协议来了解影响硅阳极安全性的因素,特别关注硅电极上发生的高放热反应。Q1 完成 3. 已经确定了 CO2 对模型电极上 SEI 形成稳定性的影响,但检查了 SEI 性质的变化(XPS、FTIR/Raman 和定量电化学测量)作为 CO2 浓度的函数。Q2 完成 4. 已经使用 XPS、AFM/SSRM、STEM-EDS 和 FTIR/Raman 确定了 zintl 相形成机理及其对包括 Si NPs、Si 晶片、a-Si 薄膜在内的模型系统 SEI 的影响。 Q2 完成 5. 锡硅合金生产是否通过取决于该合金能否以 1g 的量制备,以及该合金的循环寿命是否比纯金属更长。 Q2 完成 6. 已经确定了 LiPAA/Si 界面的化学和界面特性(例如 Si 表面和有机材料处的化学键合性质),以及电荷(OCV,0.8V、0.4V、0.15V、0.05V)和干燥温度(100、125、150、175、200C)的关系。 Q3 7. 已经确定了粘合剂如何通过利用二维或三维模型系统改变 Si NP 尺寸和表面来改变硅电极上的应力/应变,以及电荷状态的关系。 Q3 8. 已经实施了能够比较硅阳极安全响应的协议,作为提高硅电池安全性的指标。 Q3 9. 已经发表了一篇论文,使其他研发小组能够分析硅基阳极上 SEI 的稳定性,从而使开发人员或研究人员能够不断提高硅电池的稳定性(与 Silicon Deep Dive 的共同里程碑)。Q4 10. 已经了解了形成的/可溶的 SEI 物质的性质和数量如何随电解质、粘合剂和 Si 阳极(表面
燃料电池是未来的技术,是通过化学反应和H 2 O作为废物释放热量的氢和氧来创建电能的设备。由于没有燃烧而产生的电力,因此污染较少。化学反应发生在聚合物电解质膜(PEM)燃料电池中的部分由膜组成。在这项研究中,研究了燃料电池的不同大小(5-25-50 cm 2)的燃料消耗,并通过实验确定影响性能的因素。首先,安装了PEM燃料电池,并根据已建立的电池的特征将适当量的氢(H 2)和氧(O 2)发送到燃料电池。在研究期间,确定了不同尺寸的燃料电池的性能。根据燃料电池中的C-H比值确定燃料电池的行为,并根据产生的电流发现功率值。根据燃料电池的大小评估了燃料电池的性能,并计算了其产生的电能量。在这种情况下,确定表面积为5 cm 2的燃料电池分别是C60H60中最有效的,C60H46中的25 cm 2和C60H46中的50 cm 2分别为50 cm 2。
摘要:增加了从例如光伏和风能中存储间歇性可再生电力的需求,导致大量的大规模固定能量存储中的大量研发,例如,斑马电池(Na-Nicl 2固体电解质电池)。用丰富和低成本的Zn代替Ni,使斑马电池更具成本效益。然而,很少对此下一代斑马(Na-Zncl 2)电池系统进行研究,尤其是在其ALCL 3 -NACL-ZNCL 2二级电解质上。其特性(例如相图和蒸气压力)对于细胞设计和优化至关重要。在我们以前的工作中,一种用于熔融盐电解质选择的模拟辅助方法显示了其在熔融盐电池开发中的成功应用。此处使用相同的方法来研究ALCL 3 -NACL-ZNCL 2盐电解质的相图和通过事实TM和热分析技术(差速器扫描量热法(DSC)和最佳电池效果及其对电池性能的影响和放电机制的影响,其相位图和蒸气压力(差分扫描量热法(DSC)和效果。DSC和Optimelt结果表明,诸如熔化温度和相变的实验数据与模拟相图非常吻合。此外,事实TM模拟表明,随着ALCL 3的温度和摩尔分数的升高,盐蒸气压力显着增加。获得的相图和蒸气压将用于辅助电解质选择,电池设计和电池操作。
•在VT-475解决方案中预先分散的OCSIAL SWCNT•VT-475的所有优点,加上…•易于,均匀,均匀分散•无干燥的CNT处理•电导率增加,细胞容量增加,粘附增加
这项研究旨在创建和评估基于角叉菜胶和腐烂西红柿的环保生物病房的性能,以减少B3废物。为基于角叉菜胶和烂番茄制作生物库,将五个比例的carlageenan和腐烂的西红柿混合物用于每种电池的1、2、2、3、4和5%的角叉菜胶值的组成。本研究中观察到的参数是生物库的电势差,当前强度和稳定性。添加了Carrageenan,以防止电池泄漏并保持电池稳定性。结果,生物库具有等同于商业电池的电势差值,即1.5 V,但产生的电流仍然很低。另一方面,可以将生物库应用于闹钟。Carrageenan浓度的差异对电势差,电流强度,功率,充电能力以及在壁钟上的应用以及生物对象的稳定性没有显着影响。实验是用果皮可以吸收腐烂西红柿的假设进行的,从而防止电解质泄漏。但是,所得的生物库仍在泄漏。之后,我们通过使用由腐烂的西红柿和椰子渣制成的电解质再次对其进行了修改,但是泄漏仍然相同。因此,假定由角叉菜胶和腐烂的西红柿组合制成的生物库,可以使电池更稳定并防止泄漏。这项研究预计将有助于开发环保电池以减少B3浪费,以及在工业革命时代对电池的越来越多的需求4.0。
摘要:含有硫的固体电解质正在增加研究人员的牵引力,并且每天都在越来越受欢迎。最近,Li 7 P 3 S 11,Li 10 Gep 2 S 12和Li 11 Si 2 PS 12固体电解质在文献中引起了极大的兴趣。这些电解质的离子电导率可以达到高达10 -2 s/cm的值。为此,本研究采用了机械合金方法来合成LI 7 P 3 S 11固体电解质,用于全稳态锂硫电池。为此,将Li 2 S和P 2 S 5成分在某些化学计量比中混合在球磨机中。通过DSC热分析方法确定所获得的粉末的结晶温度,并在适当的结晶温度下在保护氛围下结晶。随后,以对环境条件的高敏感性而闻名的获得的粉末,在专门设计的外壳中进行了XRD和拉曼分析,以防止暴露于开放的大气中。通过电化学阻抗光谱和循环伏安法分析在特殊的固态细胞中对经过结构表征进行电化学测试进行了电化学测试。值得注意的是,环状伏安法分析揭示了一个令人印象深刻的电化学窗口,该窗口延伸至最低5V。此外,在室温下以1.1 mscm⁻的定量Li 7 P 3 S 11颗粒的总电导率,进一步强调了其优惠的电化学性质。结果表现出与现有文献的兼容性,证实了合成的电解质的生存能力,是锂硫硫电池的合适候选者。
背景:电解质失衡显着,使心电图(ECG)成为至关重要的非侵入性工具。这项研究系统地重新查看并荟萃分析了AI模型的诊断性准确性,用于检测ECG的这些失衡,旨在增强早期检测并改善心脏护理。方法:我们搜索了9个数据库和参考列表。两名审稿人通过诊断准确性研究2(Quadas-2)的质量评估偏见。测试性能数据被提取到2×2表中,并计算出具有双变量随机效应模型的特异性,灵敏度和诊断优势比(DOR)的汇总估计值,该模型呈现在前面图和摘要接收器的操作特征曲线中。我们通过元回归探索了异质性,检查了内部/外部数据集和铅数。结果:包括有关钾,钙和钠的21项研究。仅在钾失衡(10项研究)上进行了荟萃分析,从五个国家进行了600,000多个ECG,主要是12个国家。在八项研究中,载于高钾血症,合并的灵敏度,特异性和DOR为0.856(95%CI:0.829-0.879),0.788(0.744-0.826)和21.8(17.8-26.7)。低钾血症(六项研究),合并灵敏度,特异性和DOR为0.824(0.785-0.856),0.724(0.668-0.774)和12.27(9.15–16.47)。Quadas-2评估显示,患者选择偏见的高风险为52%,这主要是由于采样细节不足和病例对照方法。结论:AI模型可以检测基于ECG的元素异常,尤其是高钾血症,并且在需要频繁的电解质评估的ICU环境和对终末期肾脏疾病患者的家庭监测中有价值。然而,对各种临床环境,医院,种族,国家和地区进行了更大的回顾性和前瞻性研究。
推理 11:30 – 12:10 Daniel Brandell 教授(乌普萨拉大学) 使用 AI 发现氧化还原稳定的有机电池电极 12:10 – 13:30 午餐 全体会议 2(主席:Masahiro Yoshizawa-Fujita) 13:30 – 14:10 Teppei Yamada 教授(东京大学) 相变在电化学热电转换中的应用 14:10 – 14:50 Takahiro Ichikawa 教授(东京农工大学) 基于陀螺仪设计先进质子导电电解质
用于收集生物电信号的柔软且灵活的设备的开发正在为可穿戴和可植入应用获得动力。在这些设备中,有机电化学晶体管 (OECT) 因其低工作电压和大信号放大而脱颖而出,能够转换微弱的生物信号。虽然液体电解质已证明在 OECT 中有效,但它们限制了其工作温度,并且由于潜在的泄漏而对电子封装构成挑战。相反,固体电解质具有机械灵活性、对环境因素的稳健性以及桥接刚性干电子系统和柔软湿润生物组织之间界面的能力等优势。然而,很少有系统表现出与各种最先进的有机混合离子电子导体 (OMIEC) 的通用性和兼容性。本文介绍了一种高拉伸性、柔韧性、生物相容性、自修复性的明胶基固态电解质,该电解质与 p 型和 n 型 OMIEC 通道兼容,同时保持高性能和出色的稳定性。此外,这种非挥发性电解质在高达 120°C 的温度下仍保持稳定,即使在干燥环境中也表现出高离子电导率。此外,还展示了一种基于 OECT 的互补逆变器,其归一化增益创下了 228 V − 1 的最高纪录,相应的静态功耗超低为 1 nW。这些进步为从生物电子学到节能植入物的多种应用铺平了道路。