麻省理工学院的物理学家及其同事首次在量子层面测量了固体中电子的几何形状。科学家早就知道如何测量晶体材料中电子的能量和速度,但到目前为止,这些系统的量子几何形状只能从理论上推断,有时甚至根本无法推断。
摘要 激光能量与电子的耦合是强激光-等离子体相互作用中几乎所有主题的基础,包括激光驱动的粒子和辐射产生、相对论光学、惯性约束聚变和实验室天体物理学。我们报告了对箔靶总能量吸收的测量结果,这些箔靶厚度范围从 20 μ m(对于该厚度,靶保持不透明且表面相互作用占主导地位)到 40 nm(对于该厚度,膨胀可实现相对论诱导的透明性和体积相互作用)。我们测量到,在最佳厚度 ∼ 380 nm 处,总峰值吸收率为 ∼ 80%。对于较薄的靶,虽然总吸收率会降低,但逃离靶的高能电子数量会增加。2D 粒子模拟表明,这是由于强激光脉冲在靶体积内传播时,电子被直接激光加速所致。结果表明,总能量与电子的耦合和有效加速到更高能量之间存在权衡。
超导冷凝物:基本思想是将超导体视为量子系统,其中样品中的所有电子都可以通过同一波函数描述,这与仅一个电子的波函数类似。这种行为称为相干行为。(一个更熟悉的示例是激光,在这种情况下,激光发出的所有光子均以相同的波函数为单位,具有相同的频率,相同的波长和相同的阶段。)为了使设备成为超导,其所有电子的宏观分数就足够了。例如,在较高的温度下,参与超导冷凝水波函数的电子的比例降低,实际上在t = tc时为零。
可获得受控电子流的装置是所有电子电路的基本组成部分。在 1948 年发现晶体管之前,此类装置大多是真空管(也称为阀门),例如真空二极管具有两个电极,即阳极(通常称为极板)和阴极;三极管具有三个电极——阴极、极板和栅极;四极管和五极管(分别有 4 个和 5 个电极)。在真空管中,电子由加热的阴极提供,通过改变不同电极之间的电压可获得这些电子在真空中的受控流动。电极间空间必须为真空,否则移动电子可能会在与其路径中的空气分子碰撞时失去能量。在这些装置中,电子只能从阴极流向阳极(即只能朝一个方向流)。因此,此类装置通常被称为阀门。这些真空管设备体积庞大,功耗高,通常在高电压(~100 V)下工作,寿命有限,可靠性低。现代固态半导体电子器件的发展可以追溯到 20 世纪 30 年代,当时人们意识到某些固态半导体及其结可以控制流经它们的电荷载流子的数量和方向。光、热或施加的小电压等简单激励可以改变半导体中移动电荷的数量。请注意,电源
石墨烯是一块薄薄的碳原子,类似于金属,因为它的电子在纸板的平面上自由移动,形成密集的云,通常阻止其他颗粒和离子穿过它。但是,电子场可以使质子从上到下渗透薄片,从而将石墨烯变成一种筛子1。某些质子与云中的电子结合,形成缺陷,而缺陷又在剩下的电子流过纸张时散射其剩余的电子。结果类似于不受监管的交通交集:电子在一个方向上移动的电子与质子来自另一个。第619页,Tong等人。2报告一种驯服这些质子和电子产生两个独立电流的方法。非常不可渗透是石墨烯的电子云,即使是最小的原子,氢也可能需要数十亿年的时间才能通过纸。从氢叶中去除孤独的质子,其质子甚至更小,并且具有电荷。电场可以将质子通过聚合物或电解质驱动到相邻的石墨烯薄片中,从而使石墨烯成为易于用作氢燃料电池过滤器的杂物材料。这些设备通过将氢原子拆分为质子和电子来起作用:元素会产生电流,然后与质子和氧气重组以形成水作为废物。石墨烯和这些漫游质子之间的相互作用也可用于计算。以及渗透石墨烯,质子可以与其电子结合。切换的能力,尽管原始石墨烯具有出色的电导率(比金属的电导率更好,但如果其电子中的足够多的电子结合到传入的质子,材料就会变成电绝缘体。,但是可以通过使用电极(称为栅极)施加将电场泵入石墨烯的电场来恢复其电导率。
当电子通过电路移动时,它们会与电路和电路中的离子和原子相撞。这会引起电荷流的阻力。电阻单位是欧姆(ω)。一条长线比短线具有更大的电阻性,因为电子在通过更长的电线时与更多的离子碰撞。可以通过测量电流和电势差来找到电气组件的电阻:
为了抑制光生的电子和单个光催化剂中孔的重组,一种重要的方法是通过结合两个光催化剂来设计异构。此方法已广泛用于增强复合材料的光催化性能。在开始时,大多数人都使用II型电荷载体传递机制来解释复合半导体的出色活性。虽然II型杂插机制可以说明空间中光所产生的电子和孔的分离,但它面临着巨大的问题和挑战。首先,复合光催化剂的还原能力随着光基电子从高传导带(CB)转移到低CB的转移而降低。同样,复合光催化剂的氧化能力随着孔从较低的价带(VB)转移到较高的Vb而降低。因此,从热力学的角度来看,由于系统的氧化还原能力降低,该电荷载体转移对光催化的降低有害。其次,从动态的角度来看,由于其强的电子电子库仑排斥力,因此不可能将电子从一个光催化剂转移到另一个光催化剂。同样,孔也不可能从低Vb转移到高VB。因此,近年来越来越多的研究表明,II型异质结载体转移机械机械不正确。在2019年,为了解决II型异质结构机制中电荷载体转移机制的问题,首先提出了一种新的步骤方案(S-SCHEME)杂结概念。S-Scheme杂结包含两个不同的半导体光催化剂,即还原光催化剂(RP)和氧化光催化剂(OP)。RP的CB,VB和费米水平高于OP。在RP和OP接触之后,由于RP和OP具有不同的费米水平,RP中的电子将转移到OP,直到其界面处的费米级别相等。该电子转移分别以正电荷和负电荷导致RP和OP。最后,在界面上构建了内置电场,其方向是从RP到OP。在光照射下,电子从两个光催化剂的VB都激发到其CBS。然后,内置的电场驱动了光生电子从OP转移到RP。因此,光生的电子和孔在空间上
1. 引言单电子隧穿 (SET) 器件提供了一种操控单个电子并以极高的精度检测这些电子运动的方法。它们对计量和基本常数的潜在影响早在 20 世纪 80 年代该领域的发展中就已被认识到。到 20 世纪 90 年代初,几种 SET 器件已证明能够检测比 e 小得多的电荷并将单个电荷从一个电极转移到另一个电极。在过去几年中,这些器件的性能已提升到基本标准和高精度测量所需的水平:SET 静电计可以在 1 Hz 带宽内检测到 ~ 10 –5 e;电子陷阱可以将单个电荷存储数小时;电子泵可以传输数亿个单个电子,不确定度约为 10 –
