在 3.5 至 8.5 eV 的能量下观察到,并且形成截面低两到三个数量级。未记录长寿命分子离子。在 DFT CAM B3LYP/6-311 + G(d,p)近似中的计算预测存在六种稳定的阴离子结构,其中氯阴离子通过非共价 H − Cl − − H 键与中性残基配位。这些结构中最稳定的电子亲和力与实验测量值 EA a = 0.2771±0.003 eV 相一致。这些结果与先前获得的关于溴取代联苯、萘和蒽分子的 DEA 数据一致,并证实了具有非共价 H − Hal − H 键的阴离子结构的存在。这种非共价阴离子结构应该极具反应性,这使得它们有望用于合成自组装碳氢化合物纳米膜。
审查:“通过诸如价电子(dopingp)等制备中的NIR-VIS-UV吸收光谱培养纳米管的分布”
计算结果表明,电子催化策略显着降低了将N 2转换为AZO化合物的活化能。与非催化反应相比,该反应需要3.44 eV(在正常条件下几乎不可能),电子催化的途径将活化能降低至仅为0.14 eV,从而使反应在动力学上可行。此外,该策略表现出广泛的适用性,扩展到偶氮合成超出各种芳基卤化物和亲核芳香族化合物,为合成高价值增添化学物质的有效方法提供了有效的方法。
用电子向分子发电的净零碳燃料生成电力驱动的工艺可以直接或与化学或生物过程结合使用,从而减少了二氧化碳和生物量(廉价捕获CO2)的原料或化学物质或化学物质。净零产品是没有净温室气体排放或碳足迹的产品。例如,在NREL,随时可用的化合物(例如二氧化碳和水)通过电催化而转化为反应性中间体,并与生物或催化过程相结合,以产生我们今天使用的化合物,以使化学物质,质体和纤维制成化学物质。这些途径包括成熟的工业技术和有前途的替代方法,这些方法需要重大的早期研究以应对技术和商业化障碍。需要在各种电化学,生物电化学和杂化电化学/生化途径中进行研究。
从使用基于化石的燃料到绿色氢和电力的转变为未来新化学的发展提供了巨大的挑战和机会。特种化学物质和中间体源自碱(石油)化学物质是化学,材料,农业和药物行业的主要部分(请参见化学树,图1),并且由于这些化学基础的产生需要使这些转换过程可维护这些化学基础的产生,因此需要大量的废物形成和能源消耗。在这里,绿色氢,可再生原料和直接使用绿色电子以及新型化学转化的开发,将允许采用一致的方法来解决这些主要能量,原料和废物问题,并对我们的化学工业的大部分产生产生重大的工业和社会影响,从而对我们的大部分化学工业产生影响,从而对荷兰化学基础设施进行绿色化。
氰基有机发色团在光毒素催化中成为理想的养育剂。1 - 3在寻找可用的阴极电势窗口的扩展时,它们被用于所谓的连续光诱导的电子传递机制(Conpet,图,图。1a)。conpet工艺是由per烯比二酰亚胺染料4率先提出的,并进一步扩展到其他有机彩色团,5个,例如Dicyanoanthtaracene,6 Rhodamine 7和Eosin。8大多数情况基于中性光催化剂和相应的自由基阴离子,如图1a,但也有有关阳离子光催化剂的报道,相应的中性自由基形成了第一个光诱导的电子传递过程。9,10最近,蓝氰烯进入了竞技场,用于各种反应,包括活化还原性顽固的芳基氯化物。11 - 20
半导体P - i -n异质结构被广泛用作辐射探测器,并在光电子中具有多种应用[1-4]。在这种半导体结构中的能量吸收高于禁止带宽度的光导致电子孔对产生。对,在耗尽的I -Area中产生或从I -Area到掺杂n-和P-层的深度的扩散长度的距离与电场分开,因此电流出现在外部电路中[4]。光电流值将用载体的漂移电流定义,该载体在I -Area中产生,以及在I -Area外产生的载体的扩散电流。在某些条件下,半导体结构的光响应可以检测到多个各种量子振荡事件。例如,由于光电声发射的光激发电子和孔的放松导致光电流振荡,具体取决于刺激光子的能量[5]。在GAAS/ALAS或INGAN/GAN P -I -N超晶格中观察到来自偏置电压的光电流振荡[6,7]。在工作[8]中,研究了P - I -N-二极管在光谱光谱上的I -i -i -n-二极管中的INAS层的影响,并显示了此类异质系统对创建敏感光探测器的效率。后来,在这样的单屏障GAAS/ALAS异质结构中(见图1)在辐照时观察到巨大的光电流振荡[9,10],光子能量高于GAA中的光子能量高于禁止带宽度,而GAA中的光子宽度高,这似乎是多种共振 - 类似于Volt-Ampere特性(VAC)的特殊性。振幅为光电流时的平均光值的20%,其光线为λ= 650 nm,而在具有单个隧道屏障的p - i -i -n -diodes中,这是不可能的,这是不可能的。观察到了那个时期
本文讨论了在具有静态均匀磁场 B ∗ 的等离子体中用激光脉冲加速电子。激光脉冲垂直于磁场线传播,其极化选择为 (E 激光 · B ∗ ) = 0。本文重点研究具有可观初始横向动量的电子,这些电子由于强烈的失相,在没有磁场的情况下无法从激光中获得大量能量。结果表明,磁场可以通过旋转这样的电子来引起能量增加,从而使其动量变为向前。能量增益在这个转折点之后仍会持续,在此转折点处失相会降至一个非常小的值。与纯真空加速的情况相反,电子会经历快速的能量增加,通过分析得出的最大能量增益取决于磁场强度和波的相速度。磁场增强的能量在高激光振幅(a 0 ≫ 1)下非常有用,此时与真空中的加速度类似的加速度无法在数十微米的范围内产生高能电子。强磁场有助于在不显著增加相互作用长度的情况下增加 a 0。
b'我们表明,与激光散斑相关的质动力可以以类似于库仑散射的方式散射激光产生的等离子体中的电子。给出了实际碰撞率的解析表达式。电子散斑碰撞在高激光强度或 \xef\xac\x81lamentation 期间变得重要,\xef\xac\x80影响长脉冲和短脉冲激光强度范围。例如,我们 \xef\xac\x81 发现国家点火装置空腔激光重叠区域中的实际碰撞率预计将超过库仑碰撞率一个数量级,从而导致电子传输特性发生根本变化。在短脉冲激光-等离子体相互作用的高强度特性下( I \xe2\x89\xb3 10 17 Wcm \xe2\x88\x92 2 ),散射足够强,导致激光能量直接吸收,产生能量缩放为 E \xe2\x89\x88 1 . 44 I/ 10 18 Wcm \xe2\x88\x92 2 1 / 2 MeV 的热电子,接近实验观察到的结果。 PACS 数字: PACS 数字。'
(32)紧密结合理论认为价电子更紧密地保持原子,但在整个固体中被视价轨道重叠进行了离域。该模型适用于SI和GE等半导体,ALP和NACL等绝缘体和盐,以及𝑑金属及其化合物。实际上,紧密结合理论与分子轨道(MO)理论具有显着相似之处。电子结构的任何计算都需要选择原子轨道(AO)基集,该集通常是最小的基础集,仅包含价原子轨道。对这些AOS中的每一个都分配了价值轨道能,可以从原子光谱或Hartree-fock计算中进行经验确定,如下所示。10这些能量反映了原子电负性的趋势。然后,构建了这些AOS的对称适应性线性组合(SALC)。在MO理论中,salcs利用分子点群的不可约表示。对于紧密结合理论,使用空间群的晶格翻译亚组的不可约表示构建相应的salcs。 使用这些salcs,构建了有限的Hermitian Hamiltonian Matrix(𝐻)。 在MO理论中,𝐻具有等于分子中基本AO的数量。 在紧密结合理论中,为适当选择的波形构建,其尺寸等于一个单位细胞中的基础AOS数量。 求解特征值(电子能)和本征函数(AO系数)的世俗决定因素产率。在MO理论中,salcs利用分子点群的不可约表示。对于紧密结合理论,使用空间群的晶格翻译亚组的不可约表示构建相应的salcs。使用这些salcs,构建了有限的Hermitian Hamiltonian Matrix(𝐻)。在MO理论中,𝐻具有等于分子中基本AO的数量。在紧密结合理论中,为适当选择的波形构建,其尺寸等于一个单位细胞中的基础AOS数量。求解特征值(电子能)和本征函数(AO系数)的世俗决定因素产率。这些数值结果然后用于生成相关信息和图表。对于MO理论,输出包括MO能量图,确定最高占用和最低的无置置的MOS,即HOMO和LUMO,以及使用AO系数进行电子密度分布和键合分析的人群分析。紧密结合计算的结果产生了状态图的电子密度,这是电子能级的准连续分布,可以分解为来自各种轨道或原子成分的态密度,以及相应的FERMI水平,这是Homo的固态类似物的固态类似物。种群分析也可以进行,并提供用于识别重要键合特征的晶体轨道重叠种群(COOP)或汉密尔顿人群(COHP)图。最后,带结构图或能量分散曲线,这些曲线是沿波向量空间中特定方向的波形绘制的能量。