每个分子都有自己典型的振动光谱,就像一个指纹,可以借助于类似激光的红外辐射来确定。产生这种可调节波长的强烈红外辐射的首选方法是自由电子激光器 (FEL):在真空中,电子首先被加速到接近光速。然后,这些高能电子通过被称为波荡器的非常强的磁场。这些波荡器使电子发生波状运动。这会导致电子发射光子,形成集中的强光束。原则上,自由电子激光器可以产生几乎任何波长的电磁辐射,尽管这通常涉及 X 射线范围内的辐射,因为该范围具有最短的可能波长。同时,对于 FHI 的实验,需要并生成红外范围内的长波辐射。
•将光子的频率与光子的能量相关联。•将电子的动能或速度与电子的DE Broglie波长相关联。•将入射光子的能量与从金属样品弹出的电子的能量相关联。•分析光电效应以比较当入射光子的能量超过工作函数时,比较了弹出电子的动能。•分析光电效应,以确定当入射光子的能量不超过工作函数时是否会弹出电子。•通过分析e和p或v之间的关系以及k和p或v之间的关系,从给定的de Broglie波长中计算电子的动能。•分析最大k hf将入射光子的能量和弹出电子的动能与不同材料的工作函数相关联。
每个分子都有自己独特的振动光谱 - 就像指纹一样,可以借助类似激光的红外辐射来确定。产生这种波长可调的强红外辐射的首选方法是自由电子激光器 (FEL):在真空中,电子首先被加速到接近光速。然后,这些高能电子穿过波荡器中的非常强的磁场。这些波荡器使电子发生波状运动。这会导致电子发射光子——以集中、强烈的光束形式。原则上,自由电子激光器可以产生几乎任何波长的电磁辐射,尽管这通常涉及 X 射线范围内的辐射,该范围具有最短的可能波长。同时,对于 FHI 的实验,需要并生成红外范围内的长波辐射。
摘要 本文利用原子电子排布数据预测S、P、D、F、DF等不同区化学元素的反应性。对S区元素以及部分P、D区元素的研究表明,外层电子总量通常与最大反应价电子数相对应。但也描述了一些例外情况。提到了P区高级元素的成对s电子钝化的现象。发现了D8–D12组元素的外层电子总量与平均反应电子数之间的相关性。研究了具体的电子结构来预测F和DF区镧系元素和锕系元素的反应性。此外,还讨论了各种亚轨道(s、p、d和f)外层电子的反应性。
每个分子都有自己典型的振动光谱,就像一个指纹,可以借助于类似激光的红外辐射来确定。产生这种可调节波长的强烈红外辐射的首选方法是自由电子激光器 (FEL):在真空中,电子首先被加速到接近光速。然后,这些高能电子通过被称为波荡器的非常强的磁场。这些波荡器使电子发生波状运动。这会导致电子发射光子,形成集中的强光束。原则上,自由电子激光器可以产生几乎任何波长的电磁辐射,尽管这通常涉及 X 射线范围内的辐射,因为该范围具有最短的可能波长。同时,对于 FHI 的实验,需要并生成红外范围内的长波辐射。
每个分子都有自己典型的振动光谱,就像一个指纹,可以借助于类似激光的红外辐射来确定。产生这种可调节波长的强烈红外辐射的首选方法是自由电子激光器 (FEL):在真空中,电子首先被加速到接近光速。然后,这些高能电子通过被称为波荡器的非常强的磁场。这些波荡器使电子发生波状运动。这会导致电子发射光子,形成集中的强光束。原则上,自由电子激光器可以产生几乎任何波长的电磁辐射,尽管这通常涉及 X 射线范围内的辐射,因为该范围具有最短的可能波长。同时,对于 FHI 的实验,需要并生成红外范围内的长波辐射。
(a)在没有发出电子的情况下,入射辐射的频率最小。(b)光电子的最大动能仅取决于入射辐射的频率。(c)当金属表面照亮时,一段时间后将电子从表面弹出。(d)光电电流与入射辐射的强度无关。ans。(a)在没有发出电子的情况下,入射辐射的频率最小。仅针对一定阈值频率发射。这是因为需要最小能量来克服金属的工作函数。排出电子的动能取决于频率和工作函数。这些观察结果不能通过光的经典理论来解释,因此,光的量子性质用于解释光电效应。2。下图显示了发射的最大动能的变化
要测量的光脉冲将投射到缝隙上,并将镜头聚焦于条纹管的光电极上的光学图像中。每次稍微更改时间和空间偏移,四个光脉冲通过缝隙引入并进行到光电阴道上。在这里,光子被转换为与入射光强度成比例的许多电子。四个光脉冲被顺序转换为电子,然后将其加速并向磷光筛进行进行。由于从四个光脉冲中产生的一组电子传递在一对扫地电极之间,因此施加了高压,从而导致高速扫描(电子从顶部到底扫向了方向)。电子在垂直方向的不同时间和略有不同的角度偏转,然后进行到MCP(微通道板)。当电子通过MCP时,它们被乘以数千次,然后在磷光屏幕上轰炸,在那里它们被转换回光。与第一个入射光脉冲相对应的荧光图像位于磷光器屏幕的顶部,其次是其他荧光脉冲,其图像以降序进行。换句话说,磷光屏幕上垂直方向的轴作为颞轴。各种荧光图像的亮度与相应入射光脉冲的强度成正比。在磷光器屏幕上的水平方向上的位置对应于水平方向的入射光位置。
太阳系的图景将电子和质子描绘成微小的、固体的、类似行星的结构,它们围绕着原子中较大的内部中子旋转,这是完全错误的。电子、μ子、τ子、夸克和胶子没有内部结构,也没有物理尺寸,这意味着它们完全是虚幻的,或者换句话说,是由能量组成的。它们是零维的,更像是事件而不是事物。更糟糕的是,人们发现电子(带负电的粒子,不是真正的粒子)同时是波和粒子(波粒二象性)。电子以某种形式出现,具体取决于所涉及的实验。它们也很难被确定——毕竟,当一切都是能量时,很难让它保持在一个地方。科学家可以知道粒子的速度或位置,但不能同时知道两者。这就像警察在州际公路上以 150 英里/小时的速度记录一辆汽车,但却无法找到它来追赶它。高能粒子的另一个奇怪习性是它们可以同时出现在多个地方。电子和其他非粒子粒子被称为“叠加”,
拍瓦激光器的聚焦功率密度接近 10 21 W/cm 2(几乎是每平方厘米上集中了十亿亿瓦的能量),能量密度为每立方厘米 300 亿焦耳,远远超过恒星内部的能量密度。相关的电场非常强,大约比将电子束缚在原子核上的电场强一千倍,它们将电子从原子中剥离出来,并将其加速到相对论速度(即与光速相当)。与传统粒子加速器相比,这种加速发生在微观尺度上。巨大的电场将巨大的“颤动”能量传递给等离子体中的自由电子,从而使一些电子失去振荡。这随后导致激光能量转换为电子热能,进而加热离子并形成致密的高温等离子体。
