抽象在时间和空间控制的积累中是microRNA(miRNA)在各种发育过程中的功能的基础。在秀丽隐杆线虫中,这是通过颞型mirnas lin-4和let-7的e x增强的,但是对于大多数miRNA,d e v elopmental e xpres-sion模式仍然很差。的确,e x ppermimentserv ed long fall liv es ma y限制了可能的动力学。在这里,我们在秀丽隐杆线虫中介绍了高胚胎发育的miRNA表达。我们使用数学模型来探索潜在的机制。对于Let-7,我们可以通过节奏转录和通过RNA结合蛋白LIN-28对前体处理的节奏转录和特定阶段的调节结合来解释并实验确认。相比之下,Se v eral其他miRNA的动态不能仅通过调节生产率来解释。具体而言,示出了振荡转录和miR-235的振荡性转录和rh ythmic deca y rh ythmic积累,这是其他动物中miR-92的直系同源的。我们证明,miR-235和其他miRNA的衰变取决于EBAX-1,以前与目标指导的miRNA降解有关(TDMD)。综上所述,我们的结果提供了对动态miRNA衰变的见解,并建立了研究d v elopmental功能和作用于miRNA的调节机制的资源。
图1。基于质粒的CRISPR敲入的高度提高的克隆效率:(a)泳道1:NEB®DNA梯子标准(N3200S);泳道2:标准NEB®Q5PCR方案30个周期的Q5 PCR方案基于光涂抹和〜300bp的额外不需要的PCR产物导致过多的DNA,可重复出现30个周期。车道3-8:优化PDD162扩增的PCR循环编号。基于此数据,我们选择了15个周期作为PDD162所有后续扩增的最佳数字。(b)过多的PCR产物和DPNI消化不足会导致约35%的KLD连接克隆是错误的CAS9/SGRNA质粒。相反,优化PCR和KLD连接反应会导致90%的克隆具有正确的GRNA插入。(c)载体主链和用于
改进的基因组工程方法可以使大型和精确的编辑自动化对于系统研究基因组功能至关重要。我们将Peel-1负选择适用于秀丽隐杆线虫中CRISPR-CAS9基因组工程的优化双标志物选择(DMS)盒式方案,并观察到多种效率测量的强大提高,这些效率均一致,这些效率是一致的。使用Peel-1-DMS选择杀死了具有转基因的动物,这些动物具有转基因,并保留了基因组编辑的整合体,通常会规避视觉筛查以识别基因组编辑的动物。为了证明该方法的适用性,我们会在推定的蛋白酶体亚基PBS-1和未表征的基因K04F10中删除等位基因。3并使用机器视觉自动表征其表型促进,从而揭示了纯合基本和杂合行为表型。这些结果为快速产生和表型基因组编辑的动物提供了强大而可扩展的方法,而无需通过眼睛进行筛查或评分。
基因编辑c。使用基于质粒的CRISPR试剂的秀丽隐杆线虫需要对许多动物进行显微注射才能产生单一编辑。质粒传播CAS9的种系沉默是效率低下的主要原因。在这里,我们提供一组c。秀丽隐杆线虫菌株从综合转基因中构成了种系中表达cas9的菌株。这些菌株显着提高了基于质粒的CRISPR编辑的成功率。对于简单的,短的同源臂GFP插入,注射动物的50-100%通常会产生编辑的后代,具体取决于目标基因座。模板引导的来自外染色体阵列的编辑在几代人中维持。我们在多个杂种上使用CAS9转基因建立了菌株。此外,每个CAS9基因座还包含一个由热轴驱动的CRE重组酶,可选择可选标记物和明亮的荧光标记物,以便于易于脱落。这些集成的CAS9菌株大大减少了产生单个基因组编辑的工作量。
阿尔茨海默氏症、帕金森氏症和亨廷顿氏病可能是由增强蛋白质聚集的突变引起的,但是我们对这些途径的分子参与者的了解还不够,无法开发出治疗这些毁灭性疾病的方法。在这里,我们筛选可能增强秀丽隐杆线虫聚集的突变,以研究防止失调稳态的机制。我们报告说,气孔素同源物 UNC-1 激活 ASJ 感觉/内分泌神经元中磺基转移酶 SSU-1 的神经激素信号传导。ASJ 中产生的一种假定激素靶向核受体 NHR-1,后者在肌肉中自主作用于细胞,调节多聚谷氨酰胺重复 (polyQ) 聚集。第二个核受体 DAF-12 起着与 NHR-1 相反的作用,以维持蛋白质稳态。 unc- 1突变体的转录组学分析揭示了参与脂肪代谢的基因表达的变化,这表明由神经激素信号传导控制的脂肪代谢变化有助于蛋白质稳态的维持。此外,参与已鉴定信号通路的酶是治疗由蛋白质稳态破坏引起的神经退行性疾病的潜在靶点。
简历和讨论摘要:本申请提议在先前的研究工作的基础上,确定秀丽隐杆线虫中抗病毒信号传导和 RNA 免疫传感途径的机制。该提案具有重要意义,因为它试图通过确定秀丽隐杆线虫中可诱导的抗病毒和抗真菌反应来增进我们对先天免疫反应的理解。该申请的其他主要优势包括一支经验丰富的研究人员团队,他们在 RNA 测序和细胞内病原体反应途径方面拥有专业知识。研究方法包括全面讨论先前研究的严谨性、开发用于探索细胞内病原体反应途径的独特工具的技术创新。有大量令人信服的初步数据支持这项工作的可行性,对潜在的陷阱和替代方法进行了充分的描述。总体而言,审查小组对这一强大的申请表现出很高的热情。
朱利安·兰伯特(Julien Lambert),卡拉·莱特 - 费尔南德斯(Carla Lloret-Fernández),露西·拉普兰(Lucie Laplane),理查德·普尔(Richard Poole),索菲·贾里亚特(Sophie Jarriault)。关于秀丽隐杆线虫中单细胞模型的天然可塑性的起源和概念框架的起源和概念框架。线虫发展与疾病模型,144,Elsevier,第111-159、2021页,当前发育生物学的主题,978-0-0-12-816177-7。10.1016/bs.ctdb.2021.03.004。hal-03450893
摘要:雷帕霉素 (mTOR) 激酶的机制靶点是促进健康和延长寿命的首要药物靶点之一。除雷帕霉素外,只有少数其他 mTOR 抑制剂被开发出来并被证明能够减缓衰老。我们使用机器学习来预测针对 mTOR 的新型小分子。我们选择了一种小分子 TKA001,基于对高靶向概率、低毒性、良好的物理化学性质和更好的 ADMET 特征的计算机预测。我们通过分子对接和分子动力学对 TKA001 结合进行了计算机建模。TKA001 在体外可有效抑制 TOR 复合物 1 和 2 信号传导。此外,TKA001 在体外可抑制人类癌细胞增殖并延长秀丽隐杆线虫的寿命,这表明 TKA001 能够在体内减缓衰老。
核孔(NUPS)组装核孔,形成核质和细胞质之间的渗透屏障。核苷也位于胞质灶中,提议充当孔隙组装中间体。在这里,我们表征了完整动物秀丽隐杆线虫中细胞质NUP灶的组成和发生率。我们发现,在年轻的非压力动物中,NUP灶仅出现在发育的精子,卵母细胞和胚胎,表达高水平核孔蛋白的组织。焦点是高度有粘性FG重复核苷(FG-Nups)的冷凝物,它们通过翻译后修饰和伴侣活性在细胞质中的溶解度极限接近其溶解度极限。只有一小部分FG-NUP分子集中在NUP灶中,后者在M期溶解,并且对于核孔组装而言是可分配的。核孔蛋白的凝结通过压力和增长而增强,并且在后有丝分裂神经元中单个FG-NUP的过表达足以诱导异位凝结和生物麻痹。我们推测NUP焦点是非必需的且潜在的毒性冷凝物,其组装在健康细胞中被积极抑制。
免疫系统不断与病原体诱导的压力作斗争,这通常会以物种特异性的方式导致免疫基因家族的进化膨胀。与单个哺乳动物的pals ortholog相比,PALS基因家族在秀丽隐杆线虫基因组中扩展到39个成员。我们以前的研究表明,该家族的两个成员PALS-22和PALS-25是控制细胞内病原体反应(IPR)的拮抗旁系同源物。IPR是一种保护性转录反应,在两种分子不同的天然细胞内病原体C感染后,它会激活。秀丽隐杆线虫 - 来自微孢子虫门的Orsay病毒和真菌Nematocida parisii。在这项研究中,我们确定了PALS-17的先前未表征的成员,作为新近描述的IPR负面调节剂。PALS-17突变体显示IPR基因表达的组成型上调,对细胞内病原体的免疫力增加以及发育和繁殖受损。我们还发现,另外两个先前未表征的PALS基因PALS-20和PALS-16是IPR的阳性调节剂,在PALS-17的下游作用。这些积极的调节剂逆转了PALS-17对IPR基因表达,免疫力和发育的影响。我们表明,阴性的IPR调节蛋白PALS-17和阳性的IPR调节蛋白PALS-20共定位在肠上皮细胞的顶部和顶部,这是IPR诱导病原体的感染部位。秀丽隐杆线。总而言之,我们的研究表明,来自扩展的PAL基因家族的几个PAL基因作为ON/OFF开关模块的作用,以调节c中自然细胞内病原体之间的生物发育与免疫之间的偏见。