执行摘要 埃尔克河上游和福丁河谷的高海拔草原被认为是东库特尼落基山脉前山脉中独一无二的。TEMBEC 认为这些地区具有很高的保护价值,并提出了文献综述和测绘研究。研究目标如下:1. 识别和数字描绘 3 号公路以北和埃尔克河以东的福丁河和埃尔克河流域的草原;2. 文献综述和研究区域内植物、脊椎动物和无脊椎动物的生物信息摘要;3. 制定植物和蝴蝶采样计划。文献和测绘工作的结果总结如下。• 初步的草地测绘结果产生了 613 个草地或草地/灌木丛/草本植物多边形,总面积为 4,792.13,平均面积为 7.82。共有 64 个草地多边形受到或可能受到埃尔克河上游和福丁河谷工业活动的影响。• 根据对研究区域生态数据的审查,目前在东南库特尼的 ESSFdk、ESSFdkw、ESSFdkp 和 ATun 子区列出的相关或非相关站点系列均无法充分描述研究区域内的高海拔草地生态系统。• 由于大多数研究都是为了支持煤矿开发而进行的,因此在与钙质母质相关或与采矿活动无关的草地生态系统中完成的采样很少。• 目前尚不清楚林业活动对研究区域草原生态系统的影响。但是,研究区域内已批准或拟议的森林采伐活动可能会导致未来森林采伐相关影响更大。• 对已发表的文献以及几次互联网搜索的回顾表明,研究区域高海拔草原中存在的几种物种的自生态信息不足。• 本报告记录的先前研究中没有记录森林物种侵占或杂草物种入侵亚高山草原的证据。
仅限交叉训练机:对于 EN 957-9 A 级精度测试,通过将阻力装置(发生器)和控制台连接到测功机来测量机械输入功率。扭矩测试数据以所有可用的速度和阻力水平设置进行记录。然后通过减速测试确定机械阻力,无需用户操作设备,以准确测量启动速度和踏板停止所需的时间。然后根据系统惯性、输入速度和停止设备所需的时间计算停止设备所需的扭矩,然后将其添加到测功机数据以获得系统总扭矩。然后使用测量的扭矩和速度来计算机械输入功率以及与显示功率的方差。在 10 级,55 rpm 的恒定速度下,显示的功率为 107 瓦,与测试设备上测得的输入功率相差 4.7%。在 12 级,80 rpm 的恒定速度下,显示的功率为 136 瓦,与测试设备上测得的输入功率相差 1.6%。
仅限交叉训练机:对于 EN 957-9 A 级精度测试,通过将阻力装置(发生器)和控制台连接到测功机来测量机械输入功率。扭矩测试数据以所有可用的速度和阻力水平设置进行记录。然后通过减速测试确定机械阻力,无需用户操作设备,以准确测量启动速度和踏板停止所需的时间。然后根据系统惯性、输入速度和停止设备所需的时间计算停止设备所需的扭矩,然后将其添加到测功机数据以获得系统总扭矩。然后使用测量的扭矩和速度来计算机械输入功率以及与显示功率的方差。在 10 级,55 rpm 的恒定速度下,显示的功率为 107 瓦,与测试设备上测得的输入功率相差 4.7%。在 12 级,80 rpm 的恒定速度下,显示的功率为 136 瓦,与测试设备上测得的输入功率相差 1.6%。
摘要:地形机载 LiDAR 数据的使用已成为考古勘探的重要组成部分,并且对考古特定数据处理工作流程的需求是众所周知的。因此,令人惊讶的是,很少有人关注处理的关键要素:考古专用 DEM。因此,本文的目的是详细描述考古专用 DEM,提供其自动精度评估工具,并确定适当的网格分辨率。我们将考古专用 DEM 定义为 DEM 的子类型,它是从地面点、建筑物和四种形态类型的考古特征插值而来的。我们引入了一个置信度图(QGIS 插件),为每个网格单元分配一个置信度。这主要用于为每个考古特征附加一个置信度,这对于检测考古解释中的数据偏差很有用。置信度映射也是确定特定数据集最佳网格分辨率的有效工具。除了考古应用之外,置信度图还为分割提供了明确的标准,这是 DEM 插值中尚未解决的问题之一。所有这些都是朝着机载 LiDAR 在考古学中的一般方法成熟迈出的重要一步,这是我们的最终目标。
地理信息系统 (GIS) 生成的数字高程模型 (DEM) 已被证明是水文研究中的有用工具,除其他外,它有助于划定集水区、确定排水模式和流径以及确定径流。它们在地形相对平坦的地区特别有价值,因为这些地区通常很难完成这些任务。然而,由于湿地的高程差异通常低于或刚好在标准地形图的等高线间隔范围内,标准地形图的等高线间隔通常为 20 米,某些地区为 5 米,因此后者无法提供足够的细节。这意味着湿地研究通常很难获得足够详细的地形信息。相对于许多研究预算而言,针对特定地点的高分辨率地形调查过于昂贵,无法成为可行的替代方案。本文以喀斯特泥炭地周围约 12 平方公里的研究区域为基础,介绍了一种以 1 米为间隔、低成本从 Google Earth TM 卫星图像中检索所需高分辨率高程数据的方法。本文介绍了使用 GIS ArcDesktop™ 捕获和处理数据以生成高分辨率等高线图和 DEM 的程序。为了保证质量,将生成的地图与总局测绘局 (CDSM) 发布的 5 米和 20 米等高线间隔标准地形图 (1:50000) 进行视觉比较。c 之后
1 澳大利亚莫纳什大学地理与环境科学学院 GIS 中心,Clayton VIC 3800,澳大利亚 2 澳大利亚可持续集水区中心和南昆士兰大学工程与测量学院 Toowoomba QLD 4350,澳大利亚 电子邮件:xiaoye.liu@usq.edu.au 摘要 机载 LiDAR 已成为广泛应用中数字高程数据采集的首选技术。相对于指定垂直基准的垂直精度是指定 LiDAR 高程数据质量的主要标准。LiDAR 高程数据的定量评估通常通过将高精度检查点与从 LiDAR 地面数据估计的高程进行比较来进行。然而,通过现场测量收集足够数量的检查点是一项耗时的任务。本研究使用测量标记评估农村地区不同土地覆盖的 LiDAR 数据的垂直精度,并探索从与检查点位置相对应的 LiDAR 数据中获取高程的不同方法的性能。使用频率直方图和分位数-分位数图对 LiDAR 数据和检查点之间的垂直差异进行了正态性检验,因此可以使用适当的测量方法(公式 1.96 × RMSE 或 95 百分位数)来评估不同土地覆盖的 LiDAR 数据的垂直精度。结果证明了使用测量标记作为检查点来评估 LiDAR 数据垂直精度的适用性。关键词:LiDAR、机载激光扫描、数字高程模型、测量标记、精度评估 引言 机载光探测和测距 (LiDAR),也称为机载激光扫描 (ALS),是最有效的地形数据收集手段之一。使用 LiDAR 数据生成数字高程模型 (DEM) 正在成为空间科学界的标准做法 [10]。LiDAR 输出的一个吸引人的特点是点的三维坐标的高密度和高精度,其特点是垂直精度为 10-50 厘米 RMSE(均方根误差)在 68% 置信水平下(或 19.6-98 厘米在 95% 置信水平下),水平点间距为 1-3 米 [13]。只有在最理想的情况下才能实现 10-15 厘米 RMSE(置信度为 68%)的更高垂直精度 [ 10 ]。LiDAR 数据质量评估方法也因应用和 LiDAR 数据的交付格式而异。项目中 LiDAR 高程数据的实际精度取决于飞行高度、激光束发散度、扫描带内反射点的位置、LiDAR 系统误差(包括全球定位系统 (GPS) 和惯性测量单元 (IMU) 的误差)、与 GPS 地面基站的距离以及 LiDAR 数据分类(过滤)可靠性 [10]、[27]。对于使用分类的 LiDAR 点云生成的 DEM,相对于指定垂直基准的垂直精度是指定 LiDAR 高程数据质量的主要标准 [19]。LiDAR 高程数据的定量评估通常通过将高精度检查点与从 LiDAR 估计的高程进行比较来进行
Will Burt 的锁定气动桅杆非常适合军事通信、高架测试和移动雷达应用。当需要长时间部署桅杆时,锁定环可使桅杆在没有气压的情况下无限期地保持伸展状态。车载重型锁定 (HDL) 型号可选配拉线,最高可达 60 英尺(18 米)。提供商用现货 (COTS) 重型型号。超重型锁定 (SHDL) 和超重型锁定 (UHDL) 型号具有更大的未拉线高度和更大的有效载荷能力。标准型号如下所示。可根据要求提供定制高度和有效载荷能力。