1.简介 2010 年 4 月,美国国家海洋和大气管理局 (NOAA) 下属的国家地球物理数据中心 (NGDC) 开发了路易斯安那州新奥尔良的三个水深地形数字高程模型 (DEM)(图1)。这些 DEM 是根据 2009 年美国复苏与再投资法案 (ARRA) 1 为 NOAA 海岸调查发展实验室 (CSDL) 开发的,旨在评估 Vertical.Datum 的实用性。转换工具 ( VDatum ) 由 NOAA 海岸调查办公室 (OCS)、国家大地测量局 (NGS) 和业务海洋产品和服务中心 (CO-OPS) 联合开发 ( http://vdatum.noaa.gov/ )。参考 1988 年北美垂直基准 (NAVD 88) 的 1/3 弧秒 2 DEM 经过精心开发和评估。从 VDatum 派生的 NAVD 88 到平均高水位 (MHW) 1/3 弧秒转换网格。然后创建项目区域以模拟新奥尔良地区的 NAVD 88 和 MHW 之间的关系。NGDC 将 NAVD 88 DEM 和转换网格结合起来开发了 1/3 弧秒 MHW DEM。使用相同的过程生成平均低低水位 (MLLW) 1/3 弧秒转换网格。NAVD 88 DEM 是根据该地区的各种数字数据集生成的(网格边界和来源如图 1、5 和 10 所示),这些 DEM 将用于风暴潮淹没和海平面上升建模。本报告总结了开发三个新奥尔良 DEM 所使用的数据源和方法。
前言 如何阅读本文件?本文件使用自然和概念模式语言描述了由高程专题工作组 (TWG) 开发的“INSPIRE 高程数据规范 - 技术指南”版本 3.0。数据规范基于用于所有数据规范的通用模板 1,该模板已使用附件 I、II 和 III 数据规范的开发经验进行了协调。本文件为实施 INSPIRE 指令空间数据集和服务实施规则中规定的条款提供了指导方针。它还包括其他要求和建议,虽然这些要求和建议未包含在实施规则中,但与保证或提高数据互操作性有关。两个执行摘要简要概述了 INSPIRE 数据规范过程的总体情况,特别是高程数据规范的内容。我们强烈建议管理人员、决策者以及所有不熟悉 INSPIRE 流程和/或信息建模的人员首先阅读这些执行摘要。UML 图(第 5 章)提供了一种快速查看规范的主要元素及其关系的方法。空间对象类型、属性和关系的定义包含在要素目录中(也在第 5 章中)。具有主题专业知识但不熟悉 UML 的人可以完全理解专注于要素目录的数据模型的内容。用户可能还会发现要素目录特别有用,可以检查它是否包含他们运行的应用程序所需的数据。预计技术细节将成为那些负责在高程领域实施 INSPIRE 的组织的主要兴趣所在,同时也是其他利益相关者和空间数据基础设施用户的主要兴趣所在。技术条款和底层概念通常通过示例来说明。较小的示例在规范文本内,而较长的解释性示例和选定用例的描述则附在附件中。为了将 INSPIRE 空间数据主题与空间对象类型区分开来,INSPIRE 空间数据主题以斜体表示。
关键词 机载 LiDAR;DEM;过滤;地质考古学;微地形;景观可视化;多尺度概念 摘要 本文讨论了基于高密度机载 LiDAR(光检测和测距)数据生成高精度 DEM(数字高程模型),用于跨学科景观考古研究,研究比利时根特北部 Sandy Flanders 地区的定居历史和环境。目标是创建一个没有人工特征和地形伪影的详细地形表面,以 DEM 的形式,仅通过实现真实地面点来可视化自然和当前地形。这些特征和伪影的半自动去除基于地形矢量数据、视觉解释和坡度分析。最终构建了两个 DEM:(1)TIN(不规则三角网)模型,其固有的大文件格式限制了其在大规模上的可用性;(2)网格模型,可用于小规模、中规模和大规模应用。这两个数据集都用作使用历史资料中的辅助数据进行解释的图像。其实用性在田野模式和微田野地形的案例中得到了说明。从这个 DEM 开始,这项景观历史研究的方法主要是倒退性的,即从当代景观中仍然存在并不断移动的景观结构和元素开始
抬高道路是解决公共通行权中晴天潮汐洪水的重要策略 • 通过雨水渠 • 通过地下水 • 通过漫过沿海屏障(例如海堤) • 因海平面上升(SLR)而加剧
摘要。海拔高度对降水和降雪的数量和分布模式有重大影响。许多研究确定了正海拔梯度,通常基于稀疏降水站或雪深测量数据。我们对海拔 - 雪深关系进行了系统评估。我们分析了在季节性积雪量最大时通过遥感获取的七个山区面积雪深数据。将雪深平均到 100 m 海拔带,然后与各自的海拔水平相关联。评估在三个尺度上进行:(i)完整数据集(10 km 尺度)、(ii)子集水区(km 尺度)和(iii)坡度横断面(100 m 尺度)。我们表明,所有尺度的大多数海拔-积雪深度曲线都具有单一形状。平均积雪深度随海拔高度增加,直至达到一定水平,此时积雪深度达到明显峰值,然后在最高海拔处下降。我们用通常为正的降雪海拔梯度来解释这种典型形状,该梯度受积雪覆盖和地形相互作用的影响。这些过程包括降水的优先沉积和风、滑坡和雪崩对雪的重新分布。此外,我们表明,平均积雪深度峰值的海拔水平与岩石的主要海拔水平(如果存在)相关。
Willow Creek 项目蓄水 - 30 天蓄水 (inst) 规则曲线防洪顶部 (13.89) 多用途底部 (2.4)
Corresponding Author: ubongukommi@aksu.edu.ng , +2347032465163 Date Submitted: 01/08/2022 Date Accepted: 05/01/2023 Date Published: 20/11/2023 Abstract : Rural telephony is challenging in the remote part of Nigeria due to inadequate telecommunication infrastructure, exorbitant cost of communication systems and较差的道路网络扩展光纤网络。这些因素在许多村庄中构成贫困或没有蜂窝网络服务。另外,使用电视空间(TVWS)技术通过超高频(UHF)促进农村地区的电话服务,并且非常高频(VHF)频谱具有成本效益。因此,该研究研究了高程角对UHF/VHF频率处信号传播的影响。实验测试方案在不同的高程角度测量了接收的信号质量性能并传输功率水平,以获得更稳定的结果以进行实质性推断。实验测试方案考虑了一个通信链路,以436 MHz的UHF频率运行。在实验过程中,通信连接的方位角和传播损失保持恒定,而接收天线高度角度则变化以评估高程角度的影响。在实验期间获得的评估结果。比较在零(0 0)高程角处接收的信号质量性能,已经观察到,当发射功率分配增加时,接收的信号质量会提高。是从实验结果中得出的,即接收天线的高度角度对接收的信号质量性能有重大影响。结果进一步表明,在给定的发射功率水平为34dBm,在零(0 0)高程角度测试配置时,获得了1.80 dB的信号质量性能,在30 0时在30 0高度角度和10.9 dB时在60 0高度上获得10.9 dB,相比在0 0升高时(0 0升高),在30 0 0.9.90 0.9.90 db时获得了高度的质量性能,发射功率水平增加到46.98 dBM。这种见解在使用TVWS频率的农村电信服务的设计和网络计划中非常有用,以改善农村宽带渗透率。关键字:天线,高程角,超高频(UHF),电信和非常高的频率(VHF)。
海拔与经纬度相结合,可提供描述地形的三维 (3D) 位置信息,这对于山地研究和开发至关重要 (Ko¨ rner 2007;Malhi et al 2010)。亚历山大·冯·洪堡是最早认识到这一点的西方探险家之一:他在墨西哥、哥伦比亚和厄瓜多尔山区的探险表明,了解地球表面生物物理特征的 3D 位置对于制图以及了解沿海拔梯度相互作用的生物、非生物和人为因素之间的分布关系非常重要 (Godlewska 1999;Zimmerer 2006;von Humboldt 2013)。从那时起,人类学家、地理学家和生态学家就一直试图量化和可视化海拔如何影响山区的各种现象 (McVicar and K¨ rner 2013)。例如,研究表明,海拔升高会导致物种分布(Feeley 等人,2011 年)、作物多样性(Zimmerer,1999 年)、农业用地(Guillet,1981 年;Brush,1982 年;Young,1993 年)、净初级生产力(Beck 等人,2008 年;Zhang 等人,2013 年)和生物地球化学循环(Girardin
3D 高程计划 (3DEP;参见侧边栏) 由美国地质调查局 (USGS) 与联邦、州、部落、美国领土和地方机构合作管理,以获得质量等级 2 或更高的一致激光雷达覆盖(表 1),满足国家和犹他州的诸多需求。图 1 显示了犹他州可用和正在进行的 3DEP 基线激光雷达数据的状态。3DEP 基线激光雷达数据包括质量等级 2 或更高、1 米或更好的数字高程模型和激光雷达点云,并且必须满足激光雷达基础规范 1.2 版(https://www.usgs.gov/3dep/lidarspec)或更新的要求。国家增强高程评估(Dewberry,2012 年)确定了用户需求,并保守估计激光雷达数据的可用性每年将为该州带来至少 870 万美元的新收益。表 2 显示了犹他州使用 3D 高程数据的十大企业,这些企业基于 3DEP 的年度保守效益估算。
