本文件为根据 18 CFR § 806.14(a)(6) 和 (c)(5)、CFR § 806.22(e)(4)、CFR § 806.22(f)(4) 提交的项目申请所需的计量计划的准备提供指导,该计划应遵守 18 CFR § 806.30 中关于监测取水和消耗性用途的方法的标准。它还为根据 18 CFR § 806.14(b)(2)(iv) 提交的地下水取水申请所需的地下水高程监测计划 (GWEMP) 提供指导,该计划应遵守 18 CFR § 806.30 中的标准。具体而言,本指南适用于新建、更新、重大修改、小修改(如适用)、消耗性用途和转移申请的地表水源或地下水源项目。
*Eawag:瑞士联邦水生科学与技术研究所,瑞士。电子邮件地址:joaopaulo.leitao@eawag.ch **贝尔格莱德大学土木工程系,塞尔维亚贝尔格莱德。电子邮件地址:eprodano@hikom.grf.bg.ac.rs ***伦敦帝国理工学院土木与环境工程系,英国伦敦。电子邮件地址:c.maksimovic@imperial.ac.uk
1.简介 2010 年 4 月,美国国家海洋和大气管理局 (NOAA) 下属的国家地球物理数据中心 (NGDC) 开发了路易斯安那州新奥尔良的三个水深地形数字高程模型 (DEM)(图1)。这些 DEM 是根据 2009 年美国复苏与再投资法案 (ARRA) 1 为 NOAA 海岸调查发展实验室 (CSDL) 开发的,旨在评估 Vertical.Datum 的实用性。转换工具 ( VDatum ) 由 NOAA 海岸调查办公室 (OCS)、国家大地测量局 (NGS) 和业务海洋产品和服务中心 (CO-OPS) 联合开发 ( http://vdatum.noaa.gov/ )。参考 1988 年北美垂直基准 (NAVD 88) 的 1/3 弧秒 2 DEM 经过精心开发和评估。从 VDatum 派生的 NAVD 88 到平均高水位 (MHW) 1/3 弧秒转换网格。然后创建项目区域以模拟新奥尔良地区的 NAVD 88 和 MHW 之间的关系。NGDC 将 NAVD 88 DEM 和转换网格结合起来开发了 1/3 弧秒 MHW DEM。使用相同的过程生成平均低低水位 (MLLW) 1/3 弧秒转换网格。NAVD 88 DEM 是根据该地区的各种数字数据集生成的(网格边界和来源如图 1、5 和 10 所示),这些 DEM 将用于风暴潮淹没和海平面上升建模。本报告总结了开发三个新奥尔良 DEM 所使用的数据源和方法。
关键词 机载 LiDAR;DEM;过滤;地质考古学;微地形;景观可视化;多尺度概念 摘要 本文讨论了基于高密度机载 LiDAR(光检测和测距)数据生成高精度 DEM(数字高程模型),用于跨学科景观考古研究,研究比利时根特北部 Sandy Flanders 地区的定居历史和环境。目标是创建一个没有人工特征和地形伪影的详细地形表面,以 DEM 的形式,仅通过实现真实地面点来可视化自然和当前地形。这些特征和伪影的半自动去除基于地形矢量数据、视觉解释和坡度分析。最终构建了两个 DEM:(1)TIN(不规则三角网)模型,其固有的大文件格式限制了其在大规模上的可用性;(2)网格模型,可用于小规模、中规模和大规模应用。这两个数据集都用作使用历史资料中的辅助数据进行解释的图像。其实用性在田野模式和微田野地形的案例中得到了说明。从这个 DEM 开始,这项景观历史研究的方法主要是倒退性的,即从当代景观中仍然存在并不断移动的景观结构和元素开始
地理信息系统 (GIS) 生成的数字高程模型 (DEM) 已被证明是水文研究中的有用工具,除其他外,它有助于划定集水区、确定排水模式和流径以及确定径流。它们在地形相对平坦的地区特别有价值,因为这些地区通常很难完成这些任务。然而,由于湿地的高程差异通常低于或刚好在标准地形图的等高线间隔范围内,标准地形图的等高线间隔通常为 20 米,某些地区为 5 米,因此后者无法提供足够的细节。这意味着湿地研究通常很难获得足够详细的地形信息。相对于许多研究预算而言,针对特定地点的高分辨率地形调查过于昂贵,无法成为可行的替代方案。本文以喀斯特泥炭地周围约 12 平方公里的研究区域为基础,介绍了一种以 1 米为间隔、低成本从 Google Earth TM 卫星图像中检索所需高分辨率高程数据的方法。本文介绍了使用 GIS ArcDesktop™ 捕获和处理数据以生成高分辨率等高线图和 DEM 的程序。为了保证质量,将生成的地图与总局测绘局 (CDSM) 发布的 5 米和 20 米等高线间隔标准地形图 (1:50000) 进行视觉比较。c 之后