堪萨斯河流域米尔福德水坝和水库 1144.40 海拔 1143.56 1143.56 1143.56 1143.56 1143.56 1143.57 1143.57 1143.57 流入量 70 70 70 70 70 100 65 65 流出量 50 50 50 50 50 50 50 塔特尔克里克水坝和水库 1075.00 海拔 1070.24 1070.20 1070.18 1070.15 1070.08 1070.06 1070.04 1069.97 流入量 400 320 320 350 250 420 400 250 流出量 500 500 500 500 500 500 500 500 佩里水坝和水库 891.50 海拔 890.45 890.44 890.41 890.37 890.35 890.32 890.30 890.26 流入量 100 100 50 50 50 50 50 25 流出量 200 200 200 200 200 200 200 克林顿水坝和水库 875.50 海拔 875.73 875.74 875.74 875.72 875.73 875.73 875.73 875.71 流入量 15 15 15 10 20 15 15 10 流出量 7 7 7 7 7 7 7 密苏里河流域史密斯维尔水坝和水库 864.20 海拔 863.23 863.24 863.25 863.24 863.25 863.23 863.15 863.10 流入量 5 30 20 15 50 145 50 80 流出量 8 8 8 8 8 209 250 250 朗维尤水坝和水库 891.00 海拔 891.11 891.11 891.13 891.13 891.13 891.13 891.13 891.12 流入量 10 10 20 15 10 10 10 流出量 11 11 11 11 11 11 11 11 蓝泉大坝和水库 802.00 海拔 801.91 801.91 801.93 801.94 801.94 801.94 801.95 801.95 流入量 3 3 5 5 5 5 5 3 流出量 0 0 0 0 0 0 0 0 查里顿河流域 拉斯本大坝和水库 904.00 海拔 903.06 903.05 903.06 903.08 903.09 903.10 903.15 903.16 流入量 5 5 5 125 75 50 275 75 流出量 13 13 13 13 13 13 13 长支水坝与水库 791.00 海拔 789.79 789.80 789.81 789.80 789.81 789.87 790.04 790.11 流入量 10 20 20 10 10 10 200 95 流出量 7 7 7 7 7 7 7 7 奥塞奇河流域梅尔文水坝与水库 1036.00 海拔 1035.75 1035.77 1035.76 1035.74 1035.71 1035.77 1035.72 1035.69 流入量 10 10 10 10 10 10 10 10 流出量 50 50 50 50 50 50 50 波莫纳水坝与水库 974.00 海拔 973.20 973.20 973.20 973.19 973.17 973.22 973.17 973.15 流入量 20 20 20 10 10 10 5 5 流出量 15 15 15 15 15 15 15 15 希尔斯代尔水坝与水库 917.00 海拔 915.10 915.11 915.11 915.11 915.11 915.11 915.10 915.09 流入量 3 3 3 3 3 3 3 3 流出量 3 3 3 3 3 3 3 3 Pomme de Terre 大坝和水库 839.00 海拔 838.29 838.31 838.33 838.33 838.34 838.36 838.35 838.35 流入量 110 70 80 60 55 55 50 60 流出量 50 50 50 50 50 50 50 50 Stockton 大坝和水库 867.00 海拔 861.43 861.44 861.49 861.49 861.53 861.48 861.52 861.55 流入 300 275 270 250 240 235 230 220 流出 40 40 40 40 40 40 40 40
按照类似的原理,路径损耗也受仰角的影响,因此 α UX 可能会随着无人机仰角 θ X 的增加而减小。这样,G2G 链路,其中 θ X = 0 ,
WORLDDEM – 新型全球基础层 G. Riegler、S. D. Hennig、M. Weber 空中客车防务与航天 – 地理情报,88039 Friedrichshafen,德国 - (gertrud.riegler、simon.hennig、marco.weber)@astrium.eads.net 关键词:WorldDEM、TanDEM-X 任务、高质量全球数字高程模型 摘要:空中客车防务与航天的 WorldDEM™ 提供具有空前质量、准确性和覆盖范围的全球数字高程模型。该产品在 12m x 12m 栅格中的垂直精度为 2m(相对),优于 6m(绝对)。其精度将超过任何现有的全球卫星高程模型。WorldDEM 是一项改变游戏规则的颠覆性技术,将定义全球高程模型的新标准。德国雷达卫星 TerraSAR-X 和 TanDEM-X 在太空中形成高精度雷达干涉仪,并为 WorldDEM 获取数据基础。这项任务与德国航空航天中心 (DLR) 联合执行。空中客车 DS 完善了数字表面模型(例如编辑采集、处理工件和水面)或生成数字地形模型。提供三个产品级别:WorldDEMcore(处理输出,不应用任何编辑)、WorldDEM™(保证无空隙地形描述和水文一致性)和 WorldDEM DTM(代表裸地高程)。精确的高程数据是任何精确地理空间产品的初始基础,特别是在基于它进行多源图像和数据集成时。融合数据可提高可靠性、增强置信度并减少歧义性。本文将介绍产品开发活动的现状,包括生成这些活动的方法和工具,如地形和水体编辑以及 DTM 生成。此外,还将介绍对 WorldDEM 产品的验证和确认研究。1.简介 数字高程模型 (DEM) 是许多商业和科学活动的关键,例如用于分析和预测环境和地球物理过程或事件,以进行危机干预规划,如洪水和风险测绘,用于水文、林业、多源地理数据正射校正和测绘、基础设施规划和导航等应用。例如,在石油和天然气业务中,高程信息对于进行石油和天然气田的可行性研究、勘探、开发和管理至关重要。高程模型的质量和可靠性至关重要。对高程信息的可用性、覆盖范围、准确性和同质性的要求日益提高。如今,市场上有许多来自各种机载和星载系统的 DEM 产品。大面积高度信息,尤其是全球 DEM,通常是来自各种来源的数据的拼凑,其中包含许多不同精度、分辨率、时间差、格式和投影的不同数据。结果很难统一,地球上每个点的质量也都不一样(Gantert 等人2011 年)。从 TanDEM-X 任务期间获取的 TanDEM-X DEM 衍生的 WorldDEM 是第一个来自同一来源的全球极点到极点数字高程模型。TanDEM-X 任务(TerraSAR-X 数字高程测量附加组件)是在德国航空航天中心 (DLR) 和空中客车防务与航天公司之间的公私合作伙伴关系 (PPP) 下实现的。空中客车 DS 拥有该数据的独家商业营销权,并负责根据全球商业用户的需求调整和完善高程模型 (Riegler 2013)。
一根由直径为 15 厘米的管道组成的虹吸管用于从油箱 A 中排出煤油(RD = 0.80)。虹吸管在 1.00 米的高度处排入大气。油箱中的油面在 4.00 米的高度。虹吸管在其最高点 C 的中心线在 5.50 米的高度。估计 (i) 管道中的排放量,以及 (ii) 点 C 处的压力。管道中的损失可假设为从顶部到顶部 0.5 米,从顶部到出口 1.2 米。
数据访问声明:全球每小时气候数据可在https://cds.climate.copernicus.eu/上获得。环境参数包括:(1)在https://wwwww.ncei.noaa.gov/data/avhrr-land-land-land-land-leaf-area-inea-index-andex-fapar/,(2)全球栖息地类型上,可在https://wwwwwww.esa-sa-esa-landcover-cci.orcci.3.3 https://webmap.ornl.gov/ogc/ , (4) soil types available at https://www.soilgrids.org , (5) digital elevation model available at https://www.usgs.gov/centres/eros/science/usgs-eros-archive-digital- elevation-shuttle-radar-topography-mission-srtm-1 .微气候模型可通过https://github.com/ilyamaclean/microcloclimf免费下载和适应。全球热带森林监测数据集可从https://forobs.jrc.ec.europa.eu/tmf获得。可根据要求可从https://www.soiltempproject.com/the-soiltemp-database/获得验证的温度记录。
Aster GDEM的数字高程模型(DEM):DEM是由无植被或建筑物的高程数据产生的地形表面的3D表示。它有助于计算影响太阳辐射效率和屋顶太阳能电池板效率的斜率,方面和阴影。先进的Spacemane热排放和反射辐射仪全球数字高程模型(Aster GDEM)是美国宇航局与日本经济,贸易和行业之间的合作。Aster GDEM以30米的高分辨率提供了全球高程数据,这是对地形的详细分析所必需的。它提供了高分辨率高程数据,用于地形分析,水文建模,坡度和方面分析,太阳辐射估计,基础设施计划,自然资源管理和灾难管理。钦奈的DEM对于绘制屋顶潜力,相对于地形识别建筑物的身高,建立屋顶倾斜度,方向以及评估周围地形和结构对太阳暴露的影响至关重要。USGS Earth Explorer Web应用程序允许用户搜索,预览和下载地球上任何位置的地理空间数据,并且在此需要在钦奈中分析太阳能屋顶潜力。
1 炮盾 • 铝制外壳,用于对火炮部件进行防风雨、防弹和防生化防护。上部结构 [炮室] 在系统运行期间无人值守。 • 支撑检修门、系统通风、液压集管箱和与防护罩一体的减压缓冲器。 2 枪尾 • 固定炮管内的子弹以便射击,连接电动击针,并在射击时容纳爆炸压力。 3 炮口防护罩 • 提供动态外壳,覆盖和密封火炮的仰角弧,并为炮管和弹壳弹出门安装防风雨端口。 4 炮尾机构 • 液压活塞驱动的连杆,用于在射击或哑火事件后升高和降低枪尾和提取推进剂所需的部件。 5 炮管外壳 • 支撑炮管的后膛端。 • 安装后坐和反后坐缸,以及阀控气体喷射系统,以清除炮管中的残留气体。 6 炮架 • 为上部火炮提供底环和耳轴支撑。 • 安装传动机构和仰角动力驱动器、上部蓄能器系统、滑动组件和防护罩。• 为火炮的传动机构和仰角功能提供轴线。7 支架 • 为传动机构轴承和齿轮环的固定部件提供安装在甲板上的平台。8 托架 • 升至火炮仰角轴线,将垂直方向的弹药从上部提升机转移到火炮滑动装置的指向角,以便于后膛装填。9 滑动装置 • 火炮发射部件的主要组件,包括托架、枪尾盖和枪尾机构;火炮身管外壳;空壳提取器和托盘。• 安装火炮仰角轴线的耳轴;安装仰角齿轮扇形装置。
1 炮盾 • 铝制外壳,用于对炮部件进行防风雨、防弹和防生化防护。上部结构 [炮室] 在系统运行期间无人值守。• 支撑检修门、系统通风、液压集水箱和与防护罩一体的减压缓冲器。 2 枪尾 • 固定炮管内的子弹以便射击,连接电动撞针,并在射击时容纳爆炸压力。 3 炮口防护罩 • 提供动态外壳,覆盖和密封炮的仰角弧,并为炮管和弹壳弹出门安装防风雨端口。 4 炮尾机构 • 液压活塞驱动的连杆,用于在射击或哑火事件后升高和降低枪尾以及提取推进剂所需的部件。 5 炮管外壳 • 支撑炮管的炮尾端。• 安装后坐和反后坐缸以及阀控气体喷射系统以清除炮管中的残留气体。 6 支架 • 为上部火炮提供基座环和耳轴支撑。 • 安装传动系统和升降动力驱动器、上部蓄能器系统、滑动组件和防护罩。 • 为火炮的传动系统和升降功能提供轴。 7 支架 • 为传动系统轴承和齿轮环的固定组件提供安装在甲板上的平台。 8 支架 • 升至火炮升降轴,将垂直方向的弹药从上部提升机转移到火炮滑动装置的指向角,以方便后膛装填。 9 滑动装置 • 主要组件
