自我监督学的模型已被发现对诸如自动语音识别,说话者识别等的任务非常有效。但是,它们在言语增强系统中的效用尚未牢固确立,也许有些误解。在本文中,我们将使用SSL表示在具有挑战性的条件下用于增强单渠道语音的用途,并确定它们对增强任务的影响。我们的约束是围绕实时的实时语音增强设计的 - 模型是因果关系,并且计算足迹很小。此外,我们专注于低SNR条件,在这种情况下,这种模型难以提供良好的性能。索引术语:语音增强,WAV2VEC2,GCRN,预训练,知识蒸馏,调理
少量学习 (FSL) 是从少量训练示例中学习识别以前未见过的图像类别的任务。这是一项具有挑战性的任务,因为可用的示例可能不足以明确确定哪些视觉特征最能体现所考虑类别的特征。为了缓解这个问题,我们提出了一种额外考虑图像类别名称的方法。虽然之前的工作已经探索过类名的使用,但我们的方法在两个关键方面有所不同。首先,虽然之前的工作旨在直接从词嵌入中预测视觉原型,但我们发现通过分别处理视觉和基于文本的原型可以获得更好的结果。其次,我们提出了一种使用 BERT 语言模型学习类名嵌入的简单策略,我们发现该策略大大优于之前工作中使用的 GloVe 向量。此外,我们提出了一种处理这些向量高维性的策略,该策略受到跨语言词嵌入对齐模型的启发。我们对 miniImageNet、CUB 和 tieredImageNet 进行了实验,结果表明我们的方法能够持续提高基于度量的 FSL 的最新水平。
最新的表示学习研究表明,层次数据将自己带入双曲线空间中的低维和高度信息的表示。但是,即使双曲线嵌入在图像识别方面也收集了,它们的优化也容易出现数值障碍。此外,与传统的Eu-Clidean特征相比,尚不清楚哪种应用将受益于双曲线的隐性偏见最大。在本文中,我们专注于原型双曲神经网络。尤其是,双曲线嵌入的趋势会在高维度收敛到庞加尔e球的边界,并且对这对几乎没有的分类具有影响。我们表明,在常见的双曲半径上获得双曲线嵌入的最佳射击效果。与先前的基准结果相反,我们证明了配备有欧几里德指标的固定radius编码器可以实现更好的性能,而与嵌入式维度无关。
免责声明本文件是作为由美国政府机构赞助的工作的帐户准备的。美国政府和劳伦斯·利弗莫尔国家安全,有限责任公司,或其任何雇员均不对任何信息,设备,产品或流程的准确性,完整性或有用性承担任何法律责任或责任,或承担任何法律责任或责任,或者代表其使用不会侵犯私有权利。以本文提及任何特定的商业产品,流程或服务,商标,制造商或其他方式不一定构成或暗示其认可,建议或受到美国政府或Lawrence Livermore National Security,LLC的认可。本文所表达的作者的观点和意见不一定陈述或反映美国政府或劳伦斯·利弗莫尔国家安全,有限责任公司的观点和观点,不得用于广告或产品代表目的。
生物序列最近的邻居搜索在生物信息学中起有趣的作用。减轻二次复杂性对常规距离计算的痛苦,神经距离嵌入(将项目序列置于几何空间中)已被公认为是有希望的范式。为了维持序列之间的距离顺序,这些模型所有部署三重态损失并使用直观方法来选择三胞胎的子集,以从广阔的选择空间中进行训练。但是,我们观察到,这种训练通常使模型只能区分一小部分距离顺序,从而使其他人未被认可。此外,天真地选择了更多的三胞胎进行最新的网络下的培训,不仅增加了成本,而且还增加了模型性能。在本文中,我们介绍了Bio-KNN:KNN搜索框架 - 生物序列的工作。它包括一种系统的三重态选择方法和一个多头网络,增强了所有距离订单的识别而不增加培训费用。最初,我们提出了一种基于聚类的方法,将所有三重态分为具有相似支持的几个群集,然后使用创新策略从这些群集中选择三胞胎。同时,我们注意到同一网络中同时培训不同类型的三胞胎无法实现预期的性能,因此我们提出了一个多头网络来解决此问题。我们的网络采用卷积神经网络(CNN)来提取所有群集共享的本地效果,然后分别学习一个分别为每个群集学习多层启示(MLP)头。此外,我们将CNN视为特殊的头部,从而将以前模型中忽略的关键特征整合到我们的模型中以获得相似性识别。广泛的实验表明,我们的生物KNN在两个大规模数据集上的最先进方法显着优于而没有增加培训成本。
摘要 - 在这项研究中,我们探讨了使用频谱图代表了用于评估神经退化性疾病的手写信号,包括42个健康对照(CTL),35名患有帕金森氏病的受试者(PD),21例患有阿尔茨海默氏病(AD)和15例患有帕克森病的疾病模仿(PDM)。我们使用基于多通道的固定尺寸和基于框架的频谱图应用了CNN和CNN-BLSTM模型进行二进制分类。我们的结果表明,手写任务和频谱渠道组合会显着影响分类性能。AD与CTL的F1得分最高(89.8%),而PD与CTL达到74.5%,PD与PDM的得分为77.97%。CNN始终优于CNN-BlstM。测试了不同的滑动窗口长度,以构建基于框架的频谱图。一个1秒的窗口最适合AD,更长的Windows改进的PD分类,并且窗口长度对PD与PDM的影响很小。索引项 - 手写,神经退行性疾病,固定尺寸频谱图,基于框架的频谱图,通道。
1美国杜克大学医学院,美国北卡罗来纳州达勒姆大学医学院,美国2杜克大学血液学典型科学系高维细胞多摩学数据对于理解生物控制的各个层次至关重要。单一的'Omic方法提供了重要的见解,但在处理基因,蛋白质,代谢产物以及其他方面的复杂关系方面常常缺乏。在这里,我们提出了一种称为Gaudi的新颖,非线性和无监督的方法(通过UMAP数据集成进行组聚集),该方法利用独立的UMAP嵌入来进行多种数据类型的并发分析。Gaudi比几种最先进的方法更好地发现不同的OMIC数据之间的非线性关系。这种方法不仅通过它们的多摩尼克曲线群簇样本,而且还识别了每个OMICS数据集的潜在因素,从而促进对每个群集有助于的基本特征的解释。因此,Gaudi促进了更直观,可解释的可视化,从而从广泛的实验设计中识别出新颖的见解和潜在的生物标志物。引言多摩变分析整合了各种数据类型,例如基因组学,蛋白质组学和代谢组学。组合多种OMICS模式比单独分析每种数据类型时,有可能发现新颖的见解和生物标志物(1,2)。高通量技术的增长促使OMICS数据呈指数增加,这突显了对新的集成方法的迫切需求。传统的多摩学集成方法主要集中在降低尺寸技术上。例如,在RGCCA(3)中使用了基于规范相关分析(CCA)的方法,而MCIA中使用了共惯性分析(4)。同样,贝叶斯因子分析基于MOFA+(5)等方法,负基质分解对于Intnmf(6),主成分分析(7)和独立组件分析是TICA(8)的基础。尽管这些方法已在各种OMICS数据集和生物环境中应用,但它们的有效性和局限性各不相同,强调了在其应用中需要仔细考虑的需求(9)。这些方法共享的中心限制是它们对线性假设的依赖。虽然在某些情况下合适,但这种假设可能不足以准确捕获复合物,通常是非线性的相互作用(10,11)。此外,它们的计算强度构成了挑战,尤其是对于大型数据集。应对这些挑战,最近的进步已转向非线性整合方法(9,10)。均匀的歧管近似和投影(UMAP)是一种降低技术,可以揭示复杂数据集中的基础结构(12)。通过将流形学习与拓扑数据分析相结合,它可以有效地可视化较低空间中的高维数据。UMAP通过有效地从PCA和T-SNE等其他方法中脱颖而出
(c 1,c 2,。。。,c k)(c k +1 = c 1 + n)和l [i]∈{1,2,...,d},对于0≤i≤k,其中残基之间的接触
预测靶基因的扰动如何影响其他基因的表达是理解细胞生物学的关键组成部分。这是一个具有挑战性的预测问题,因为该模型必须捕获复杂的基因关系,并且输出是高维且稀疏的。为了应对这一挑战,我们提出了一种简单的方法,一种利用Genept嵌入的方法,它是使用单个基因的文本描述来得出的,以预测通过正规回归模型扰动引起的基因表达变化。在多种细胞类型和五个不同审慎的基因嵌入模型的八个CRISPR扰动屏幕数据集上进行了基准测试,Genepert始终胜过所有在Pearson相关和均值平方误差指标中测量的所有最新预测模型。即使使用有限的培训数据,我们的模型也有效地概括了,为预测扰动结果提供了可扩展的解决方案。这些发现强调了信息性基因嵌入的力量,以预测硅中看不见的遗传扰动实验的结果。genepert可从https://github.com/ zou-group/genepert获得。
考虑到局部几何形状[5],坐标对齐[6]和3D Zernike的描述符[7,8],已经开发了多种方法来比较,对齐和搜索[1] [1] [1] [2,3,4]。由于蛋白质结构比序列[9]更保守[9],这些方法已被证明在远程同源性检测[10],蛋白质分类[11]中有用[11],从结构[12]推断功能[12],聚类大数据库[13,14]并评估结构预测的准确性。最高的精度方法倾向于根据DALI等坐标[3]进行仔细的比较,但是搜索大型结构数据库,例如Alphafold蛋白结构数据库[15,16]或ESM宏基因组图[17] [17]使用这些方法很慢。最近,foldseek [18]通过将一级序列转换为一系列学到的局部特长基序来解决了这个问题。然后,它使用生物信息学中快速序列搜索的丰富历史记录大大减少查询的成对比较时间与数据库的每个成员。为了进一步减少搜索时间,应更快地将成对比较步骤进行。