DeepFake Technology使用AI来创建操纵媒体,对社交媒体平台上的信息完整性构成了重大威胁。在印度,Deepfake内容的兴起呈指数增长,尤其是在政治和娱乐领域,假新闻和AI生成的视频已经风靡一时,导致了错误的信息。主要目的是开发一个可靠的AI模型,该模型可以准确地检测到社交媒体平台上的深击内容,重点是使用FastText Embeddings识别机器生成的推文。传统方法涉及根据预定义的规则和关键字匹配的社交媒体帖子的人类审核,事实检查机构以及手动过滤。这些方法是耗时的,而且通常不准确,缺乏管理大量在线内容的可扩展性。手动检测深摄影和AI-AI-I-Actuct含量非常低效,容易出现错误,并且无法实时处理大量社交媒体数据。因此,在被识别或删除之前,有害和误导性信息可能会广泛传播。随着社交媒体在塑造公众舆论的日益影响,这项研究背后的动机是打击错误信息和维护在线话语的完整性。特别是深度学习模型可以通过自动化社交媒体内容的分析来显着改善对深击的检测。fastText嵌入将将推文转换为有意义的单词向量,而深度学习模型可以应用于对推文是人类生成还是AI生成的推文。与传统方法相比,这种方法提供了实时检测,提高准确性和可伸缩性。
Yuxiao Chen , Jianbo Yuan, Yu Tian, Shijie Geng, Xinyu Li, Ding Zhou, Dimitris N. Metaxas, Hongxia Yang, “ Revisiting Multimodal Representation in Contrastive Learning: From Patch and Token Embeddings to Finite Discrete Tokens ” in IEEE Conference on Computer Vision and Pat- tern Recognition (CVPR), 2023
扩散生成模型(DMS)在图像和图生成方面取得了有希望的结果。然而,现实世界图,例如社交网络,分子图和交通图,通常共享非欧国人拓扑和隐藏的层次结构。例如,图的度分布主要是幂律分布。当前的潜在扩散模型将层次数据嵌入到欧几里得空间中,从而导致扭曲并干扰建模分布。取而代之的是,由于其指数生长特性,已发现双曲线空间更适合捕获复杂的层次结构。In order to simulta- neously utilize the data generation capabilities of diffusion models and the ability of hyperbolic embeddings to extract la- tent hierarchical distributions, we propose a novel graph gen- eration method called, Hyperbolic Graph Diffusion Model (HGDM), which consists of an auto-encoder to encode nodes into successive hyperbolic embeddings, and a DM that oper- ates in the双曲线潜在空间。HGDM通过构造包含边缘信息的双曲线潜在节点空间来捕获Crucial图结构分布。的实验实验表明,HGDM在通用图和分子生成基准测试中获得了更好的表现,并且具有高度层次结构的图生成质量提高了48%。
材料和方法:我们使用了来自 2020AA–2022AB UMLS Metathesaurus 连续版本的训练测试数据集。我们的启发式“瀑布”方法采用了 7 种不同的 SG 预测方法。不符合方法的原子被传递给下一种方法。DL 方法为原子名称生成 BioWordVec 和 SapBERT 嵌入,为源词汇表名称生成 BioWordVec 嵌入,为原子源层次结构中倒数第二节点的原子名称生成 BioWordVec 嵌入。我们将 4 个嵌入的连接输入到完全连接的多层神经网络中,该网络的输出层有 15 个节点(每个 SG 一个)。对于这两种方法,我们都开发了方法来估计它们预测的原子 SG 正确的概率。基于这些估计,我们开发了 2 种混合 SG 预测方法,结合了启发式方法和 DL 方法的优势。
嵌入方法已成为一种有价值的方法,用于将基本信息从复杂的高维数据提炼成更容易访问的低维空间。嵌入方法在生物数据中的应用表明,基因嵌入可以有效地捕获基因之间的物理,结构和功能关系。但是,该实用程序主要是通过使用基因嵌入来实现下游机器学习任务来实现的。直接检查嵌入的嵌入,尤其是对嵌入空间中基因集的分析所做的少得多。在这里,我们提出了一种用于网络数据嵌入和相似性(Andes)的算法,这是一种新型最佳匹配方法,可以与现有基因嵌入式使用,以比较基因集,同时调解基因集多样性。这种直观的方法对改善各种任务的嵌入空间的实用性具有重要的下游含义。具体而言,我们展示了安第斯山脉应用于编码蛋白质相互作用的不同基因嵌入时,可以用作一种新型的过度反应和基于等级的基因集合富集分析方法,以实现最新的性能。此外,安第斯山脉可以使用多生物联合基因嵌入来促进跨生物体的功能知识转移,从而允许跨模型系统映射表型。我们的灵活,直截了当的最佳匹配方法可以扩展到设定元素之间具有不同社区结构的其他嵌入空间。
摘要。由于密码子字母的高变性,从密码子到氨基酸的映射是溢出的,这表明密码子空间可能具有更高的信息含量。嵌入密码子语言模型最近在各种下游任务中表现出成功。然而,磷酸化位点的预测模型,可以说是研究最多的翻译后修饰(PTM)和PTM位点,主要依赖于氨基酸级表示。这项工作引入了一种新的方法,通过通过近来开发的密码子语言模型的嵌入来预测磷酸化位点,该方法专门培训了蛋白质编码DNA序列。蛋白质序列首先精心映射到可靠的编码序列,并使用此编码器编码以生成密码子感知的嵌入。然后将这些嵌入与通过早期融合策略从蛋白质语言模型获得的氨基酸感知的嵌入整合。随后,从定义的窗框内的融合嵌入式形成了感兴趣的位点的窗口级表示。Convbigru网络提取物具有捕获窗口内近端残基之间的时空相关性,然后是基于高斯(Dog)小波范围函数的衍生物的Kolmogorov-Arnold网络(KAN),以产生该站点的预测推断。我们将整体模型配音为Calmphoskan。在独立测试中使用丝氨酸 - 硫代氨酸(合并)和酪氨酸测试集,Calmphoskan优于现有方法。此外,我们证明了该模型在预测蛋白质内在无序区域内的位点的有效性。总体而言,Calmphoskan成为蛋白质中一般磷酸材料的强大预测指标。Calmphoskan将很快公开发布。
摘要:DeepFake技术的扩散引起了人们对社交媒体平台上错误信息传播的关注。在本文中,我们提出了一种基于深度学习的方法,用于检测DeepFake推文,特别是由机器生成的推文,以帮助减轻在线错误信息的影响。我们的方法利用FastText嵌入来表示推文文本,并将其与深度学习模型相结合。我们首先预处理文本,然后使用FastText嵌入将它们转换为密集的向量表示。这些嵌入式捕获有关推文内容的语义信息,这对于区分真实和机器生成的推文至关重要。然后,我们将这些嵌入将这些嵌入给深度学习模型,例如卷积神经网络(CNN)或长期短期内存(LSTM)网络,以将推文归类为真实或机器生成的推文。该模型是在标有标记的Tweet数据集上训练的,在该数据集中,使用最先进的文本生成模型合成机器生成的推文。对推文的现实世界数据集的实验结果证明了我们方法在检测机器生成的推文中的有效性。我们的方法实现了很高的准确性,并且优于在社交媒体上进行深层检测的现有方法。总的来说,我们提出的方法为检测机器生成的推文并遏制整个社交媒体平台上的错误信息的扩散提供了强大而有效的解决方案。
深度神经网络 (DNN) 已成为对大脑和行为进行建模的重要工具。一个关键的关注领域是将这些网络应用于对人类相似性判断进行建模。之前的一些研究使用了视觉 DNN 倒数第二层的嵌入,并表明对这些特征进行重新加权可以改善人类相似性判断与 DNN 之间的契合度。这些研究强调了这样一种观点,即这些嵌入形成了良好的基础集,但缺乏正确的显着性水平。在这里,我们重新审视了这一想法的依据,相反,我们假设这些嵌入除了形成良好的基础集之外,还具有正确的显着性水平来解释相似性判断。只是需要修剪大维嵌入以选择与相似性空间建模所考虑的领域相关的特征。在研究 1 中,我们根据人类相似性判断的子集监督了 DNN 修剪。我们发现,剪枝:i) 改进了 DNN 嵌入中人类相似性判断的样本外预测,ii) 与 WordNet 层次结构产生更好的对齐,iii) 保留了比重新加权更高的分类准确率。研究 2 表明,通过神经生物学数据进行剪枝对于改进 DNN 嵌入中大脑衍生的表征相异矩阵的样本外预测非常有效,有时可以充实原本无法观察到的同构。使用剪枝后的 DNN,可以生成图像级热图来识别特征加载在由大脑区域编码的维度上的图像部分。因此,由人类大脑/行为监督的剪枝可以有效地识别 DNN 和人类之间可对齐的知识维度,并构成一种理解神经网络中知识组织的有效方法。© 2023 作者。由 Elsevier Ltd. 出版。这是一篇根据 CC BY 许可协议 ( http://creativecommons.org/licenses/by/4.0/ ) 开放获取的文章。