体现的碳 - 脱碳建筑物的新挑战对环境有重大影响,占所有提取物质消费的一半,而欧盟所有废物产量的三分之一。诸如混凝土和钢等关键建筑材料具有较大的碳足迹,这是由于其生产,运输和建筑中所涉及的过程。这些排放物被归类为具体的碳,占欧盟建筑库存总温室气体排放的很大一部分。在2020年,建筑物的总生命周期排放量占欧盟总温室气体排放量的40%以上,体现碳占与建筑物相关的排放的20%以上。通过切换到可再生能源并提高能源效率的能源领域的脱碳和建筑物的运行,体现的碳将在2040年到2040年的全寿命(或WLC)。
每个(强制)3。在其余的七个问题中,任何四个问题要回答15分。I.有机分子和反应机制中键合的性质12小时化学键合偶联,交叉结合感应共振效应,炒作共轭,互变异症。Introduction to Aromaticity in benzenoid and non-benzenoid compounds, Three membered, five membered and seven membered compound, alternate and non-alternate hydrocarbon, Huckel's rule, energy level of 𝜋 molecular orbitals, annulenes, azulenes, anti-aromaticity, ᴪ aromaticity, homo-aromaticity, PMO approach for aromaticity.键比共价性化合物,皇冠醚复合物和密码,包含化合物,环糊精,catenanes和rotaxanes。II。 折射机制:结构和反应性12小时的机制类型,反应类型,热力学和动力学需求,热力学和动力学控制,哈蒙德的假设,Curtin-Hammett原则。 势能图,过渡状态和中间体,碳化,碳离子,自由自由基,卡宾尼硝酸盐,Arynes - 产生,结构及其稳定性,确定机制的方法。 iii。 脂肪核取代10小时S n 2,s n 1,混合s n 1和s n 2和设定机制。 相邻的组机制,相邻的小组参与𝜋和𝜎债券,固定辅助。 经典和非经典碳,近代离子,氯基系统,常见的碳定位重排。 在检测碳化液中的NMR光谱法应用。 S n 1机制。II。折射机制:结构和反应性12小时的机制类型,反应类型,热力学和动力学需求,热力学和动力学控制,哈蒙德的假设,Curtin-Hammett原则。势能图,过渡状态和中间体,碳化,碳离子,自由自由基,卡宾尼硝酸盐,Arynes - 产生,结构及其稳定性,确定机制的方法。iii。脂肪核取代10小时S n 2,s n 1,混合s n 1和s n 2和设定机制。相邻的组机制,相邻的小组参与𝜋和𝜎债券,固定辅助。经典和非经典碳,近代离子,氯基系统,常见的碳定位重排。在检测碳化液中的NMR光谱法应用。S n 1机制。在烯丙基,脂肪族三角形和vinylic碳上的亲核取代。iv。芳香的亲核取代
使用机器学习(ML)算法在制造过程中嵌入的传感器内部嵌入的信息的进步和识别,以更好地决策成为构建数据驱动的监视系统的关键推动因素。在激光粉床融合(LPBF)过程中,基于数据驱动的过程监视正在广受欢迎,因为它允许实时组件质量验证。加上制造零件的实时资格具有重要的优势,因为可以降低传统的生产后检查方法的成本。此外,可以采取纠正措施或构建终止以节省机器时间和资源。然而,尽管在满足LPBF流程中的监视需求方面取得了成功的发展,但由于不同的过程空间,在处理来自激光材料互动的数据分布的变化时,对ML模型在决策方面的鲁棒性进行了更少的研究。受到ML中域适应性的想法的启发,在这项工作中,我们提出了一种基于深度学习的无监督域适应技术,以解决由于不同的过程参数空间的数据分布的转移。在两个不同的316 L不锈钢粉末分布(> 45 µm和<45 µm)上获得了从LPBF过程区域到三个机制到三个方案的声学发射区到三个方案的声波形式。对应于用不同激光参数处理的粉末分布的声波形的时间和光谱分析显示,数据分布中存在偏移,随后用建议的无监督域适应技术对其进行处理,以具有可以普遍化的ML模型。进一步,两个分布之间提议的方法的预测准确性表明,不受欢迎地适应新环境的可行性并改善了ML模型的推广性。
根据其法律规定,巴基斯坦的高等教育委员会(HEC)已通过其国家课程修订委员会(NCRC)开发并定期更新课程。这些委员会通常由主题专家,研究人员以及认证机构,专业理事会和行业利益相关者的代表组成。响应不断发展的需求,HEC与巴基斯坦科学院(PAS)合作,已承担了在国家资格资格框架的第6级和7级的生物化学课程中制定强大的学位课程标准的任务。这些标准是根据HEC的本科教育政策对第1(2023年)和研究生教育政策(2023)的精心结构的,可确保与国家优先事项和国际教育标准保持一致。
共价键的特征。简单分子和离子的杂交和形状。价壳电子对排斥(VSEPR)理论简单分子和离子。分子轨道理论,用于同核和异核(CO和NO)双原子分子,电子缺乏分子中的多中心键,键强度和键能,偶极力矩和电负性差的离子特征。
Bohr和Sommerfield原子模型,包括吸收发射光谱,Rydberg的方程及其应用,光谱系列及其极限,物质和辐射的双重行为,De-Broglie的关系,Heisenberg的不确定性原则,Orbit概念,Orbit b)量子数量:定量,定义,确定和fribes,de and s sheiss and s s s s s s s s sheisentip and de-broglie的关系,b)淋巴结,S-,P-和D原子轨道的方向。c)电子构型定义,在各种轨道中填充电子的规则:保利排除原理,Aufbau原理和Hund的最大多样性规则,其意义,一半和完全填充轨道的稳定性,交换能量,交换能量,各种原子轨道的相对能量,各种原子轨道,解剖学构型。2。元素的定期分类:
摘要 要在本世纪中叶实现净零排放,通过负排放技术 (NET) 去除大气中的二氧化碳将发挥不可或缺的作用。随着可再生能源技术 (RET) 的引入和推广,一种清洁技术已经面临与 NET 类似的障碍——前期成本高、竞争力有限和公众认知度低。本文将 NET 政策建议与从 RET 支持中得到的经验教训进行了比较。对于 NET,由于其尚处于起步阶段,使用研发支持进行创新是明确的,然而,无论 NET 是作为替代缓解策略、过渡技术还是最后手段使用,需求拉动工具都不同。作为一种替代缓解方法,通过将 NET 整合到排放交易系统中的市场化方法是适用的,因为与减排相比,使用 NET 没有额外的环境效益。使用 NET 作为过渡技术需要限制对 NET 的需求,以控制 NET 的数量,甚至可能控制其类型。这可以通过强制或拍卖来实现。作为最后的手段,通过 NET 进行清除需要政府的大力参与,因为排放清除构成了纯公共物品。这需要公共采购甚至国家主导的 NET 运营。
按照指示,请翻到第 2 页,在继续之前仔细阅读简介和安全注意事项。在接下来的 90 分钟内,您需要完成两个与实验室相关的任务。无需在任务之间停下来,也不必按照给定的顺序完成它们。只需按照自己的节奏从一个任务完成到另一个任务,高效利用时间即可。在对每个问题进行任何实验之前,您必须有一个由考官批准的安全程序。您可以使用不可编程的计算器。90 分钟结束后,应交回所有答题纸。确保您已在每张答题纸的顶部填写了所有必填信息。请仔细遵循考官关于安全程序和在考场妥善处理化学品的所有指示。
结果:发现分别显示出140和40%的CO 2和N 2 O的大幅增加。甲烷排放量增加了3%,而CO 2排放的最大效应值为2.66,氮速率<150 kg/hm 2。CH 4排放的效应值随土壤有机含量的降低而增加,CH 4排放的效应值从浓度> 6 g/kg时变为正变为正。随着氮速率增加,在稻草回流下的n 2 O排放效应最初增加然后减少。n 2 o排放量显着增加。随机森林模型的结果表明,在稻草返回下影响CO 2和N 2 O排放的最重要因素是施用的氮量,并且影响稻草返回下玉米领域的CH 4排放的最重要因素是土壤有机碳含量。