1大气化学系,Max Planck化学研究所,Mainz 55128,德国; 2大气化学与气候系,物理化学研究所Blas Cabrera,CSIC,马德里28006,西班牙; 3香港理工大学民用与环境工程系,香港999077,中国; 4山东大学环境研究所,中国266000; 5香港科学技术大学环境与可持续发展司,香港999077,中国; 6 Max Planck气象研究所,汉堡,20146年,德国的环境建模小组; 7中国三明日岛大学的Tsinghua深圳国际研究生院环境与生态研究所,中国518000;1大气化学系,Max Planck化学研究所,Mainz 55128,德国; 2大气化学与气候系,物理化学研究所Blas Cabrera,CSIC,马德里28006,西班牙; 3香港理工大学民用与环境工程系,香港999077,中国; 4山东大学环境研究所,中国266000; 5香港科学技术大学环境与可持续发展司,香港999077,中国; 6 Max Planck气象研究所,汉堡,20146年,德国的环境建模小组; 7中国三明日岛大学的Tsinghua深圳国际研究生院环境与生态研究所,中国518000;
3,即使极端的局部温度提供了有关全球变暖的可忽略的信息,但对于居住在该地区的人们来说,它也代表着一个明显而显着的事件。Choi等。 (2020)表明,极端的当地温度是警告人们和投资者气候变化的唤醒电话。 Howe等。 (2013)证明,公众的看法与观察到的温度变化相对应的气候记录:生活在平均温度升高的地方的个人比其他人更有可能感知局部变暖。 4温度冲击可能通过减少公司建筑物中所使用的能量(加热器,空调)或更普遍地影响公司的活动而直接影响碳排放。 但是,在这些情况下,碳排放的减少将是暂时的,只有在温度冲击年才观察到。 相比之下,我们记录了碳排放的减少相对持久(冲击后长达两年)。Choi等。(2020)表明,极端的当地温度是警告人们和投资者气候变化的唤醒电话。Howe等。 (2013)证明,公众的看法与观察到的温度变化相对应的气候记录:生活在平均温度升高的地方的个人比其他人更有可能感知局部变暖。 4温度冲击可能通过减少公司建筑物中所使用的能量(加热器,空调)或更普遍地影响公司的活动而直接影响碳排放。 但是,在这些情况下,碳排放的减少将是暂时的,只有在温度冲击年才观察到。 相比之下,我们记录了碳排放的减少相对持久(冲击后长达两年)。Howe等。(2013)证明,公众的看法与观察到的温度变化相对应的气候记录:生活在平均温度升高的地方的个人比其他人更有可能感知局部变暖。4温度冲击可能通过减少公司建筑物中所使用的能量(加热器,空调)或更普遍地影响公司的活动而直接影响碳排放。但是,在这些情况下,碳排放的减少将是暂时的,只有在温度冲击年才观察到。相比之下,我们记录了碳排放的减少相对持久(冲击后长达两年)。
COVID-19 摘要 COVID-19 大流行已成为地球上最致命的传染病之一。数百万人和企业被封锁,其主要目的是阻止病毒传播。作为一种极端现象,封锁以惊人的速度引发了全球经济冲击,导致许多国家经济急剧衰退。与此同时,COVID-19 大流行导致的封锁彻底改变了能源消费模式,并减少了全球二氧化碳排放量。国际货币基金组织和国际能源署最近发布的 2020 年数据进一步预测,排放量将在 2021 年反弹。尽管如此,COVID-19 的全面影响(包括危机将持续多久以及能源消费模式和相关的二氧化碳排放水平将受到怎样的影响)尚不清楚。本评论旨在通过对 COVID-19 大流行对世界经济、世界能源需求和未来几年可能出现的世界能源相关二氧化碳排放的已观察到的影响和可能影响进行广泛而令人信服的概述,引导各国的政策制定者和政府朝着更好的方向发展。事实上,鉴于我们需要立即采取政策应对措施,且同样紧迫地解决三个问题——大流行、经济衰退和气候危机。本研究概述了可以在这些不确定时期用作指导的政策建议。 关键词:经济危机;能源使用;二氧化碳排放;气候变化;政策;COVID-19 1. 简介 COVID-19 大流行正在对世界上许多经济体造成破坏,引发全球健康危机,并因严格的隔离措施而放缓国际贸易和商业(Harapan 等人,2020 年)。除少数国家外,大多数国家都因应对大流行而进入了停滞状态。就全球各种情况而言,预计 2020 年全球国内生产总值 (GDP) 损失可能在 1.3% 至 5.8% 之间 (McKibbin & Fernando, 2020),尽管疫情对全球经济的影响具有高度不确定性 (Yu & Aviso, 2020)。经济合作与发展组织 (OECD) 和世界贸易组织指出,自 2008-2009 年全球金融危机以来,COVID-19 疫情是全球各国面临的最大警告 (Sruthi, 2020)。一些专家甚至认为,自第二次世界大战以来,世界从未经历过如此不寻常的紧急状态 (Chakraborty & Maity, 2020)。
我们使用一个结合了欧盟排放交易系统信息和企业级财务账户的新数据集来研究制造企业的资本结构与碳强度之间的关系。我们的研究结果表明,较高的财务杠杆与企业层面较低的排放强度相关,这主要是由于长期债务,这表明改善此类融资渠道通常有利于企业减排。然而,这种影响因碳强度分布而异。对于碳强度非常高的企业,杠杆率的提高与排放量的大幅减少有关,这表明更好的融资渠道可以促进绿色技术的采用。相反,对于碳效率已经相对较高的企业来说,这种影响就消失了。
乳业农业是南非经济和粮食安全的重要贡献。然而,南非与世界其他地方一样,由于动物福利的关注和对温室气体(GHG)排放的贡献而受到审查。为解决温室气体缓解措施,我们构建了一个农场级的系统动力学模型,以评估农场上碳(C)的排放,捕获和存储,以确定农场是C(源)或序列官(即水槽)的C(即源)或序列化剂的净发射器。我们考虑了营养流,饲料的类型和数量,废水管理系统,与牛群动态有关的各种参数以及对农场经济的整体影响。由此产生的在线乳制品环境可持续性工具(命运)可以帮助奶农采取可持续实践,并提高竞争力和财务可持续性,同时降低农场的排放概况,从而建立价值链和消费者信任。命运可以被视为一种科学知识的循证工具,用于估计,监测和了解乳制品生产系统中的营养和C流。它也是一种基于Web的工具(请参阅https://ssetresearch.org.za/destiny-tool/),它允许远程用户,研究人员,研究人员,从业人员,农民和技术人员便于访问,同时将系统动态模型集成到与农场现实。
氧气通过在呼吸过程中加速电子的转移来帮助生物产生能量。由于呼吸,微生物和海床的土壤动物自然释放二氧化碳。在有许多动物和有机碳的栖息地中,您通常具有海床的总呼吸(动物 +细菌)和高CO 2排放/排放。这种排放量最高,在海底的上层中,氧气大量存在,并且较高的温度加快了溶解的速度。在富含有机物质的细小沉积物中,氧气通常仅穿透表面下的1 mm。没有氧气,某些微生物仍然可以破坏有机碳,但是该过程要慢得多。如果干扰将有机碳暴露于氧气中,它将更快地分解为Co 2。
关于施耐德电气施耐德的宗旨是通过赋能所有人充分利用我们的能源和资源来创造影响力,为所有人搭建进步和可持续发展的桥梁。在施耐德,我们把这叫做Life Is On。我们的使命是成为可持续发展和效率领域值得信赖的合作伙伴。我们是全球工业技术领导者,为智能工业、弹性基础设施、面向未来的数据中心、智能建筑和直观家居提供电气化、自动化和数字化方面的世界领先专业知识。凭借我们深厚的领域专业知识,我们提供集成的端到端生命周期人工智能工业物联网解决方案,包括互联产品、自动化、软件和服务,提供数字孪生,为我们的客户实现盈利性增长。我们是一家以人为本的公司,拥有15万名员工和超过一百万个合作伙伴的生态系统,业务遍及100多个国家,以确保与客户和利益相关者的密切联系。我们在所做的每一件事中都拥抱多样性和包容性,并以我们为所有人创造可持续未来的有意义的目标为指导。www.se.com
新闻稿 新加坡,2025 年 1 月 27 日 新加坡南洋理工大学牵头的研究使用新预测方法发现,在高排放情景下,到 2100 年全球海平面很可能会上升 0.5 至 1.9 米 来自新加坡南洋理工大学 (NTU Singapore) 和荷兰代尔夫特理工大学 (TU Delft) 的跨学科研究团队预测,如果全球二氧化碳排放率继续增加并达到高排放情景,到 2100 年海平面很可能会上升 0.5 至 1.9 米。该预测范围的高端比联合国最新的 0.6 至 1.0 米的全球预测高出 90 厘米1。 NTU 团队在科学期刊《地球的未来》上报告的极有可能范围(事件发生的概率为 90%)补充了联合国气候变化政府间小组 (IPCC) 报告的海平面上升预测,该小组仅评估了可能范围(66% 的概率)内的预测概率。当前的海平面预测依赖于一系列方法来模拟气候过程。一些方法包括众所周知的现象,如冰川融化,而另一些方法则包含更不确定的事件,如突然的冰架崩塌。因此,这些模型产生的预测各不相同,很难估计可靠的极端海平面上升。不同方法预测的这种模糊性使得 IPCC 无法提供海平面预测的极有可能范围——这是管理风险的宝贵标准。为了克服这一挑战并解决当前海平面上升预测中的不确定性,NTU 研究人员开发了一种新的改进预测方法,称为
作者:3Keel支持:能源安全部和净零(DESNZ)和环境,食品和农村事务部(DEFRA)致谢:该报告由3Keel开发,并由Defra和Desnz资助。通过与供应链中的专家组成的咨询小组合作和促成环境,调查结果和建议是通过合作来塑造的。他们的宝贵反馈,见解和专业知识在整个研究过程中都是不可或缺的。我们感谢Paul Marsh(自然界世界基金(WWF)),Kate Newbury-Hyde(世界可持续发展世界商业委员会(WBCSD)(WBCSD)),Rebecca Charley(Ruscombe Farm Partnership),Ben Makowiecki和Ben Makowiecki和Relyds Bankerver(Lloyds Banking Group)(Elijah Banking Internation)(Elijah Intersive)拉姆洛(世界资源研究所),帕特里克·霍尔顿(Patrick Holden)(可持续食品信托基金)和马修·瑞安(Matthew Ryan)(雀巢英国和爱尔兰)对咨询小组的贡献。进行了三个专门的利益相关者参与研讨会,以完善原则和方案,重点关注零售,农业,认证机构和环境非政府组织的代表。We extend our gratitude to all participants for their thoughtful contributions, with thanks to IDH, Partnerships for Forests, Linking Environment and Farming (LEAF), Agriculture and Horticulture Development Board (AHDB), National Farmers' Union, Olam Group, Marks & Spencer, John Lewis Partnership, Diageo, Tesco, Gold Standard, International Platform for Insetting, Climate Stuff, Cool Farm Alliance, Proforest,金融地球和英国标准学院在利益相关者参与研讨会上的投入。为了提高场景准确性和细节,对代表牛肉和可可供应链中各种角色的演员进行了个人访谈。这些一对一的讨论为WVCM实施的挑战和机会提供了关键的基础见解。我们衷心感谢所有采访参与者的时间和专业知识,包括Proforest,Tony's Chocolonely,IDH,Dawn Meats Group和Ruscombe Farm Partnership,他们分享了他们的宝贵观点,以指导该报告的发展。
在很大程度上由化石燃料消费驱动的航空旅行的环境影响仍然是辩论的关键主题。应对这一挑战需要立即采用可持续实践来减轻其环境足迹。虽然氢和混合动力推进技术对未来有希望,但当前的努力集中在可持续的航空燃料(SAF)作为可行的近期解决方案,以减少航空排放,同时确保与现有航空基础设施的兼容性。本文研究了航空旅行的环境影响,重点是与常规燃料和SAF相关的排放。使用两种方法,即亚音速燃料流量法(SF2)和改进的版本,校正了校正的亚音速燃料流量法(EC-SF2),沿着从斯德哥尔摩到波尔多的飞行轨迹分析了非CO 2排放趋势。两种方法之间的比较强调了准确的发射建模的重要性,尤其是在SAF校正排放指数方面的重要性。SF2方法表明,SAF燃料的热量高于常规燃料的高度燃料增加了总HC和CO排放,同时降低了无X排放。相反,EC-SF2方法导致更均匀的排放趋势。因此,我们提出的方法可以根据特定于SAF的数据纠正燃油流量和排放指数,因此可以为SAF的排放行为提供更可靠的估计。这些发现突出了对环境评估的排放建模的敏感性。