皮肤是人体最大的器官,易患各种疾病,包括癌症;因此,皮肤是抵御外源性生物和非生物因子的第一道防线。皮肤癌是一种复杂而异质的过程,发病率高,由于对发病机制和临床挑战的了解不足,通常会转移。事实上,越来越多的证据表明,由于遗传、表观遗传和信号传导失调导致的转录因子 (TF) 失调在皮肤恶性肿瘤的发展和治疗挑战(包括癌症干性特征和重编程)中起着至关重要的作用。本综述重点介绍了最近探索失调的 TF(例如 NF- κ B、AP-1、STAT 等)如何协调皮肤肿瘤发病机制、重编程、干性和不良临床结果的潜在机制的发展。沿着这条路线,生物活性药物及其天然和/或合成衍生物因其多靶向潜力、对人类恶性肿瘤的潜在更安全和有效的治疗结果而受到关注。我们还讨论了利用生物活性天然产物和/或合成剂针对皮肤癌中异常表达的 TF 的治疗重要性。
摘要:肝细胞癌 (HCC) 是全球癌症死亡的主要原因,因为其肿瘤复发和转移率很高。异常的 Wnt/β-catenin 信号已被证明在 HCC 的发展、进展和对肿瘤行为的临床影响中发挥重要作用。越来越多的证据表明,Wnt/β-catenin 信号在驱动癌症干性和代谢重编程方面发挥着关键作用,这被视为新兴的癌症标志。在本综述中,我们总结了 Wnt/β-catenin 信号的调控机制及其在 HCC 中的作用。此外,我们还提供了 Wnt/β-catenin 信号在 HCC 代谢重编程、癌症干性和耐药性中的调控作用的最新信息。我们还提供了针对 Wnt/β-catenin 信号单独或与当前疗法相结合以有效治疗癌症的临床前和临床研究的最新信息。本综述深入了解了针对 HCC 中该信号通路的当前机遇和挑战。
(服务合同)顾问应在本合同终生期间始终以始终保持全部效力,保险范围,包括认可在内的限制,如本文所述。本文所包含的要求以及曼城对顾问维护的保险的审查或接受的要求无意,也不应以任何方式限制或符合顾问根据合同所承担的负债和义务。当事各方同意并认识到,圣露西港市的意图不是根据本合同的任何规定获得的任何保险/承保范围,将为任何实体,公司,企业,个人或组织提供保险范围,除了圣露西港(Port St. Lucie)和城市以外的76港口范围以外的任何保险范围外,其范围均不得延长。佛罗里达州法规,根据其自保计划。相反,此处包含的任何规定应被视为任何一方无效且无法执行。本规定不适用于任何其他方获得该项目保险的任何义务,任何义务将圣露西港市命名为根据任何其他保险单的额外保险人,或者以其他方式保护本合同中指定的圣露西港的利益。工人赔偿保险和雇主的责任:顾问应同意根据佛罗里达州第440条维护工人赔偿保险和雇主的责任。必须提供子女认可的放弃。雇主的责任,必须包括每次事故至少限制$ 100,000.00,每种疾病/雇员$ 100,000.00,每种疾病$ 500,000.00。覆盖范围应在主要基础上适用。应由顾问执行的工作范围根据联邦工人薪酬法规(例如,美国长期和港口工人法案或商人海洋法案)符合其福利的资格,必须提供适当的联邦法案覆盖范围的证明。商业一般责任保险:顾问应同意维护以事件形式(包括合同责任)签发的商业一般责任保险,以涵盖此处列出的持有无害协议,限制不小于:
1. Nakod PS、Kim Y、Rao SS。三维仿生透明质酸水凝胶用于研究胶质母细胞瘤干细胞行为。生物技术与生物工程。2020;117(2):511-522。doi: 10.1002/bit.27219 2. Nakod PS、Kim Y、Rao SS。仿生模型用于研究胶质母细胞瘤干细胞的微环境调节。癌症快报。2018;429:41-53。doi: 10.1016/j.canlet.2018.05.007 3. Stankovic T、Randelovic T、Dragoj M 等人。胶质母细胞瘤体外仿生模型——一种有前途的药物反应研究工具。药物耐药性更新。 2021;55:100753。doi:10.1016/j.drup.2021.100753 4. Wen PY、Weller M、Lee EQ 等人。成人胶质母细胞瘤:神经肿瘤学会(SNO)和欧洲神经肿瘤学会(EANO)对当前治疗和未来方向的共识审查。神经肿瘤学。2020;22(8):1073-1113。doi:10.1093/neuonc/noaa106 5. Rape A、Ananthanarayanan B、Kumar S。模拟胶质母细胞瘤微环境的工程策略。Adv Drug Deliv Rev。2014;79-80:172-183。 doi: 10.1016/j.addr.2014.08.012 6. Nakod PS、Kim Y、Rao SS。星形胶质细胞和内皮细胞对多细胞球体中胶质母细胞瘤干性标志物表达的影响。Cell Mol Bioeng。2021;14:639-651。doi: 10.1007/s12195-021-00691-y 7. Ngo MT、Harley BAC。血管周围信号改变胶质母细胞瘤的整体基因表达谱和对明胶水凝胶中替莫唑胺的反应。生物材料。2019;198:122-134。doi: 10.1016/j。 biomaterials.2018.06.013 8. Dirkse A, Golebiewska A, Buder T, 等。胶质母细胞瘤中干细胞相关异质性是由微环境塑造的内在肿瘤可塑性引起的。Nat Commun。2019;10(1):1787。doi: 10. 1038/s41467-019-09853-z 9. Zhao W, Li Y, Zhang X。癌症中的干细胞相关标志物。Cancer Transl Med。2017;3(3):87-95。doi: 10.4103/ctm.ctm_69_16
1托恩斯特堡大学医院组织工程和再生医学主席,德国罗恩特林11,97070Würzburg; matthias.peindl@uni-wuerzburg.de(M.P. ); claudia.goettlich@crl.com(C.G。 ); nto.hoff@gmail.com(N.H.); tamara.luettgens@stud-mail.uni-wuerzburg.de(t.l. ); schmitt_franziska@gmx.de(F.S. ); jesus.nieves@uni-wuerzburg.de(J.G.N.P. ); celina.may@stud-mail.uni-wuerzburg.de(c.m. ); anna.schliermann@gmail.com(A.S。); ckronenther@aol.com(C.K。 ); elena.weigl@med.uni-muenchen.de(e.w. ); sarah.nietzer@uni-wuerzburg.de(s.n。) 2生物信息学系,尤尔兹堡大学生物中心,AM HUBLAND,97074Würzburg,德国; samantha.crouch@uni-wuerzburg.de 3胸外科,KlinikumWürzburgMitte GGMBH,Salvatorstr。 7,97074德国温尔兹堡; danjouma.cheufou@kwm-klinikum.de 4病理学系,尤尔兹堡大学,约瑟夫 - 施耐德 - 斯特尔。 2,97080Würzburg,德国; simone.reu@uni-wuerzburg.de(s.r.-h.); rosenwald@uni-wuerzburg.de(A.R.) ); gudrun.dandekar@uni-wuerzburg.de(G.D.);电话。 : +49-931-3184551(T.D. ); +49-931-3182597(G.D.)†这些作者共享第一作者。 ‡这些作者分别是关于生物信息学的第一作者和最后一位作者。 §这些作者共享了最后的作者身份。1托恩斯特堡大学医院组织工程和再生医学主席,德国罗恩特林11,97070Würzburg; matthias.peindl@uni-wuerzburg.de(M.P.); claudia.goettlich@crl.com(C.G。); nto.hoff@gmail.com(N.H.); tamara.luettgens@stud-mail.uni-wuerzburg.de(t.l.); schmitt_franziska@gmx.de(F.S.); jesus.nieves@uni-wuerzburg.de(J.G.N.P.); celina.may@stud-mail.uni-wuerzburg.de(c.m.); anna.schliermann@gmail.com(A.S。); ckronenther@aol.com(C.K。); elena.weigl@med.uni-muenchen.de(e.w.); sarah.nietzer@uni-wuerzburg.de(s.n。)2生物信息学系,尤尔兹堡大学生物中心,AM HUBLAND,97074Würzburg,德国; samantha.crouch@uni-wuerzburg.de 3胸外科,KlinikumWürzburgMitte GGMBH,Salvatorstr。7,97074德国温尔兹堡; danjouma.cheufou@kwm-klinikum.de 4病理学系,尤尔兹堡大学,约瑟夫 - 施耐德 - 斯特尔。2,97080Würzburg,德国; simone.reu@uni-wuerzburg.de(s.r.-h.); rosenwald@uni-wuerzburg.de(A.R.) ); gudrun.dandekar@uni-wuerzburg.de(G.D.);电话。 : +49-931-3184551(T.D. ); +49-931-3182597(G.D.)†这些作者共享第一作者。 ‡这些作者分别是关于生物信息学的第一作者和最后一位作者。 §这些作者共享了最后的作者身份。2,97080Würzburg,德国; simone.reu@uni-wuerzburg.de(s.r.-h.); rosenwald@uni-wuerzburg.de(A.R.)); gudrun.dandekar@uni-wuerzburg.de(G.D.);电话。: +49-931-3184551(T.D.); +49-931-3182597(G.D.)†这些作者共享第一作者。‡这些作者分别是关于生物信息学的第一作者和最后一位作者。§这些作者共享了最后的作者身份。5综合癌症中心Mainfranken,Josef-Schneider-Straße6,C16建筑物,97080Würzburg,德国6托拉西奇外科系,莱比锡玛格德堡,莱比锡玛格德斯特劳斯特斯特劳斯特斯特劳斯特大学44,39120 Magdeburg; Thorsten.walles@med.ovgu.de 7 Charles River Discovery Research Services德国GmbH,Am Flughafen,14,79108 Freiburg,德国; julia.schueler@crl.com 8欧洲分子生物学实验室(EMBL)海德堡,结构和计算生物学,Meyerhofstraße,1,69117德国海德尔伯格,德国9 Fraunhofer研究所(Fraunhofer for fraunhofer for silate)研究所(ISC),ISC),转换中心中心再生疗法,再生 * 11,970000700000000000000色号,97000000000000000000000色号。 dandekar@biozentrum.uni-wuerzburg.de(T.D.5综合癌症中心Mainfranken,Josef-Schneider-Straße6,C16建筑物,97080Würzburg,德国6托拉西奇外科系,莱比锡玛格德堡,莱比锡玛格德斯特劳斯特斯特劳斯特斯特劳斯特大学44,39120 Magdeburg; Thorsten.walles@med.ovgu.de 7 Charles River Discovery Research Services德国GmbH,Am Flughafen,14,79108 Freiburg,德国; julia.schueler@crl.com 8欧洲分子生物学实验室(EMBL)海德堡,结构和计算生物学,Meyerhofstraße,1,69117德国海德尔伯格,德国9 Fraunhofer研究所(Fraunhofer for fraunhofer for silate)研究所(ISC),ISC),转换中心中心再生疗法,再生 * 11,970000700000000000000色号,97000000000000000000000色号。 dandekar@biozentrum.uni-wuerzburg.de(T.D.
为应对日益复杂和相互联系的世界,美国必须积极参与,而这种积极参与的基础是多边主义和我们的联盟。从现在到 2025 年,对于地球的未来健康和美国外交政策的未来而言,是一个关键时刻。国际和平、安全和人类健康越来越与确保强大的全球卫生系统和多边合作紧密相关,这些合作旨在应对环境挑战,例如普遍存在的污染、全球气温迅速上升和生物多样性丧失。这些问题从根本上推动和塑造了美国的利益和影响力。我们还认为,这项工作刻不容缓——如果我们不能尽快应对这些挑战,人类、自然和地球将遭受可怕且不可逆转的后果。
注意:这不是覆盖范围的证据。您必须注册并接受保险管理员的承保范围,然后在文件中所描述的好处有效。如果计划文件与本文件之间存在差异,则计划文件将确定福利计划。如本文所用的,“计划文件”一词包括但不限于小册子,福利时间表和任何小册子修正案/骑手。有关更多详细信息,请参阅您的计划文件。
BET BET BROMODOMAIN BRD4和RAC1 ONCEGONES被认为是癌症的重要治疗靶标,并在肿瘤发生,生存和转移中起关键作用。然而,在不同分子亚型的乳腺癌中,包括Luminal-A,HER-A-2阳性和三重阴性乳腺(TNBC)的BRD4-RAC1信号通路的联合抑制作用仍然未知。在这里,我们通过上下文依赖性的方式通过将乳腺癌的不同分子亚型中BRD4-RAC1致癌信号结合在一起,证明了一种新的共同定位策略。我们表明,JQ1(BRD4的抑制剂)和NSC23766(RAC1的抑制剂)的联合治疗可抑制细胞的生长,克隆性潜能,细胞迁移和乳腺干细胞的膨胀,并诱导乳腺癌细胞分子亚型的自噬和细胞衰老。从机械上讲,JQ1/NSC23766联合处理会破坏MYC/G9A轴,随后增强了FTH1以发挥抗肿瘤作用。此外,联合治疗靶标HDAC1/AC-H3K9轴,因此表明该组合在组蛋白修饰和染色质模型中的作用。c-myc消耗和与维生素-C共同治疗使乳腺癌细胞的不同分子亚型敏感到JQ1/NSC23766组合,并进一步降低细胞的生长,细胞迁移和乳腺圈形成。重要的是,使用异种移植小鼠模型在体内抑制乳腺肿瘤的生长。在临床上,RAC1和BRD4表达在乳腺癌患者的样本中呈正相关,并在乳腺癌的不同分子亚型中显示出高表达模式。Rac1和BRD4蛋白都可以预测乳腺癌患者的生存率不佳。综上所述,我们的结果表明,BRD4-RAC1途径的结合抑制作用代表了乳腺癌不同分子亚型的一种新颖而潜在的治疗方法,并突出了通过c-Myc/g9a/g9a/fth1 axis和下降量调节的乳房肿瘤发生在乳腺癌造成乳腺癌中的Rac1-BRD4信号传导的重要性。
肝细胞癌 (HCC) 是最常见的原发性肝癌,其发病率持续增长,是一个严重的医学问题。HCC 的发展是一个复杂的多步骤过程,最终会导致炎症损害、肝细胞坏死/再生和纤维化沉积 [1]。然而,HCC 的化疗治疗有局限性。目前用于一线全身治疗的药物,如索拉非尼和仑伐替尼,只能延长患者生存期几个月,主要是因为对这些疗法产生了耐药性 [2]。先前的研究报道了导致索拉非尼耐药 HCC 的潜在机制 [3]。核受体结合蛋白 2 (NRBP2) 可能通过影响 Bcl2 和 Akt 通路中存活蛋白的表达来增加 HCC 细胞化疗耐药性 [4]。组蛋白去甲基化酶赖氨酸特异性去甲基化酶 1 (KDM1A) 可通过激活 Wnt 信号增加 β -catenin 通路,从而降低 HCC 的治疗敏感性 [5]。此外,KRAS 通路加速 RAF/ERK 和 PI3K/AKT 信号传导,导致索拉非尼耐药 HCC 细胞增殖增加、凋亡抑制 [6]。多项研究表明,癌症干细胞 (CSC) 在癌症复发和对分子靶向疗法的主要耐药性中起着重要作用。最近的研究表明,具有干细胞样特征的 HCC 细胞,例如表达 CSC 表面标志 CD44、EpCAM、CD133 和 CD90,对索拉非尼诱导的细胞死亡表现出抗性 [7]。然而,索拉非尼耐药细胞获得癌症干性的机制仍不清楚 [8]。核因子红细胞衍生2样2 (Nrf2) 信号异常常见于多种癌症,包括 HCC,并参与肿瘤发生、肿瘤进展和化疗耐药性[9]。Nrf2 有助于维持氧化应激平衡,并可通过激活多种抗氧化基因的转录促进癌细胞在外来化合物毒素下的存活。Keap1/Nrf2 通路被认为是调节细胞防御氧化应激的主要信号级联。此外,Nrf2 通过驱动巨噬细胞极化为 M2 表型并促进癌细胞迁移来影响肿瘤微环境[10]。正常情况下,Keap1 在细胞质中分离并结合 Nrf2,导致蛋白酶体介导的下游基因降解[11]。在某些情况下,Nrf2 从 Keap1 中释放出来并转移到细胞核中,从而激活 ARE 介导的解毒酶基因表达,包括 HO-1 [ 12 ]。HO-1 参与调节 NRF2 靶向的 ATP 结合盒 (ABC) 外排转运体 (ABCC1、ABCG2 等) [ 13 ]。此外,Nrf2 诱导糖酵解基因的表达,并参与对癌细胞干细胞特性很重要的基因的转录调控,从而促进恶性肿瘤的发生 [14]。Nrf2 信号转导的阴暗面在癌症干细胞中也有描述。激活的 Nrf2 可减少 ROS 的产生并对药物产生抵抗性 [15]。作为转录因子,Nrf2 通过基因编辑技术促进了癌症干细胞的肿瘤生成 [16]。在本研究中,我们研究了肝癌细胞对索拉非尼耐药的机制,重点研究了 Nrf2 信号通路。我们检查了索拉非尼耐药的肝癌细胞